Antarctica

img_2456-3

The Slow Confiscation of Everything #auspol 

The Slow Confiscation of Everything

By Laurie Penny 


A protest against EPA head Scott Pruitt. / Lorie Shaull
These days, the words of the prophets are written in whimsical chalk on the hoardings of hipster latte-mongers: “The end is nigh. Coffee helps.”

 In the days running up to the inauguration of Donald Trump, I saw this sort of message everywhere, and as panic-signals go, it’s oddly palliative. 

The idea that the Western world might soon be a smoking crater or a stinking swamp does, in fact, make me a little more relaxed about the prospect of spending five dollars on a hot drink.  
Fuck it. 

The planet, as we keep telling each other, is on fire. 

Might as well have a nice latte while we wait for the flames to slobber up our ankles. 

When you consider that some desperate barista boiled the entire philosophy of post-Fordist public relations down to its acrid essence, it would be ungrateful not to. 

What have you got to lose? 

Five dollars and your pride, in the short term, but what will those be worth next year? 

Next week? 

Have you looked at the Dow Jones lately? 

Have you turned on the news? 

On second thoughts, best not—just drink your coffee and calm down. 

Look, they’ve drawn a little mushroom cloud in the milk foam. 

It’s quite beautiful, when you think about it. 
The topic of apocalypse comes up a lot these days. 

It’s slipped into conversation as compulsively as you might mention any other potentially distressing disruption to your life plans, such as a family member’s illness, or a tax audit. 

And yet the substance of the conversation has shifted in recent weeks and months from an atmosphere of chronic to acute crisis. 

The end seems to be slightly more nigh than it was last year; we talk about the Trumpocalypse with less and less irony as the Bulletin of the Atomic Scientists moves the Doomsday clock half a minute closer to midnight. 
Of all the despicable things the runaway ghost train of the Trump administration has done in its first ferocious weeks, the attempt to utterly destroy every instrument of environmental protection is perhaps the most permanent.

 The appointment of fossil fuel tycoons and fanatical climate change deniers to key positions in energy and foreign policy, the immediate reinstitution of the Dakota Access and Keystone pipelines, the promise to pull out of the Paris Climate Pact—all moves crafted to please the oil magnates who helped put him in power—these are changes that will hasten the tick of the time bomb under civilization as we know it. 

Racist laws can eventually be overthrown, and even a cultural backslide toward bigotry and nationalism can be slowly, painfully reversed. 

We don’t get a do-over on climate change. 

The vested interests agitating to strip the planet for parts know that, too—and they plan to profit from this particular apocalypse as hard as they can.
They’re not the only ones eagerly anticipating the end times. 

Apocalyptic thinking has a long and febrile history in Western thought, and it is usually associated with moments of profound cultural change, when people found it all but impossible to envision a future they might live inside. 

The notion of armageddon as something to look forward to crops up time and again at moments of profound social unrest. 

Today, that includes legions of lonely alt-righters celebrating the advent of a new post-democratic, post-civilizational age where men will be real men again, and women will be really grateful. 


This “dark enlightenment” rumbles alongside a massive revival in millenarian end-times fanaticism among the Evangelical Christians who overwhelmingly voted for a man some of them believe is the literal antichrist who will hasten the final return of Jesus and his arse-kicking angels to sweep the righteous to their reward. 

There are many millions of people, especially in the United States, who seem to want an apocalypse—a word whose literal meaning is a great “unveiling,” a moment of calamity in which the murkiest and basest of human terrors will be mercifully swept aside. 

That gentle armageddon, however, looks unlikely to be delivered. 

Frightened, angry human beings have always fantasized about the end of the world—and institutions of power have always profited from that fantasy. 

In fact, as David Graeber notes in Debt: The First 5,000 Years, the ideal psychological culture for the current form of calamity capitalism is an apprehension of coming collapse mated bluntly with the possibility of individual escape. 

An economy driven by debt and fueled by looting and burning the resources that have sustained the species for generations would feel far more monstrous if it weren’t for the lingering suspicion that it might all be in flames tomorrow anyway.

 The world is on fire. 

Might as well build that pipeline. 

Might as well have that coffee.

But what world is on fire? 

The late comedian George Carlin had it right when he reminded us that

 “The planet is fine. The people are fucked.” 

The Earth is resilient, and will stagger on in some form until it is swallowed by the sun some four billion years from now—the world that we envision ending is Western civilization as we have come to understand it, a mere eyeblink in the long species churn of planetary history. 

Apocalyptic thinking has been a consistent refrain as the human species struggles to evolve beyond its worst impulses, but the precise form of the anticipated collapse always changes. 

Those changes are important. 

The catastrophes we are anticipating today are not the catastrophes of thirty years ago, and that distinction matters a great deal.
Climate change is this generation’s calamity, and it is similar to the nuclear threat that nurtured the baby boomers in that it promises a different sort of death from the petty disasters of war, famine, and pestilence—it promises near-total species collapse. 

The past swept away along with the future. 

The deletion of collective memory. 

This is an existential threat more profound than anything humanity has had to reckon with before except in the throes of ecstatic religious millenarianism.

 Rapture, in the Abrahamic understanding, traditionally meant immortality for the species.

 We are the first to really have to wrestle with ultimate species death, extinction in memory as well as being.

 Of course we are afraid. 

We were afraid of the Bomb. 

We’re afraid now, even though many people’s understanding of climate change hasn’t moved past the denial stage.

 It is there, however, that the similarities between the two types of apocalypse end.
Climate change is a different prospect of calamity—not just elementally but morally different from nuclear exchange in a manner which has not been properly dealt with. 

The first difference is that it’s definitely happening. 

The second is that it’s not happening to everyone. 
There will be no definite moment can say that yes, today we are fucked, and yesterday we were unfucked.

For anyone who grew up in the Cold War, the apocalypse was a simple yes-no question: either it was coming, or it wasn’t. 

Many people I know who grew up before the end of the nuclear arms race describe this as oddly freeing: there was the sense that since the future might explode at any point, it was not worth the effort of planning. 

Climate change is species collapse by a thousand cuts. 

There will be no definite moment we can say that yes, today we are fucked, and yesterday we were unfucked. 

Instead the fuckery increases incrementally year on year, until this is the way the world ends: not with a bang, not with a bonfire, but with the slow and savage confiscation of every little thing that made you human, starting with hope.


“In the U.S. we have a very strong sense of apocalypse that comes from puritanism, and it fed nicely into fears about the Bomb,” says Annalee Newitz, author of Scatter, Adapt and Remember: How Humans Will Survive A Mass Extinction.

 “Both kinds of apocalypse are instantaneous and there’s not much you can do about them. 

But climate change is slow and strange, sometimes imperceptible in a human lifetime. 

There are no pyrotechnics. 

Plus, we actually have a chance to intervene and prevent the worst effects of it. 

I think that’s a tough sell for people who grew up with a Bomb paradigm of apocalypse, where there’s either fiery atomic death or you’re fine. 

It’s hard to explain to people that there are probabilities and gradations of apocalypse when it comes to the environment, and there are hundreds of ways to mitigate it, from curbing emissions to preserving natural habitats and changing our agricultural practices. 

In a weird way, I think people are just now getting used to the slow apocalypse, and still don’t know how to deal with it.”
This was the unegalitarian apocalypse millennials inherited. 

If we are to define generations by their political impressions, one thing that everyone who grew up with no memory of the Cold War shares is a specific set of superstitions. 

 One of them was the consensus that neoliberalism had produced the “End of History.” 

For those of us who had not read Francis Fukuyama by the age of five, this came across as a general sense that there was no better society to hope for, no way of living on the horizon that would improve on the one we had been raised to—the nineties and the early aughts were as good as it was going to get.

 From here on in, unless we recycled and remembered to turn off the taps like the singing Saturday afternoon TV puppets urged us to, it would be slow collapse. 

Our parents, relieved of the immediate threat of atomic incineration, seemed oddly calm about that prospect.
Not half as calm, however, as our elected and unelected leaders.

 Because that’s the inconvenient truth, the other inconvenience about the world ending this way: it’s not ending for everyone.
This month, in a fascinating article for The New Yorker, Evan Osnos interviewed several multi-millionaires who are stockpiling weapons and building private bunkers in anticipation of what preppers glibly call “SHTF”—the moment when “Shit Hits The Fan.” 

Osnos observes that the reaction of Silicon Valley Svengalis, for example, is in stark contrast to previous generations of the super-rich, who saw it as a moral duty to give back to their community in order to stave off ignorance, want and social decline. 

Family names like Carnegie and Rockefeller are still associated with philanthropy in the arts and sciences. 

These people weren’t just giving out of the goodness of their hearts, but out of the sense that they too were stakeholders in the immediate future.
Cold War leaders came to the same conclusions in spite of themselves.

 The thing about Mutually Assured Destruction is that it is, well, mutual—like aid, or understanding, or masturbation.

 The idea is that the world explodes, or doesn’t, for everyone. 

How would the Cuban Missile Crisis have gone down, though, if the negotiating parties had known, with reasonable certainty, that they and their families would be out of reach of the fallout? 
How would the Cuban Missile Crisis have gone down if the negotiating parties had known that they and their families would be out of reach of the fallout?

Today’s apocalypse will be unevenly distributed.

 It’s not the righteous who will be saved, but the rich—at least for a while.

 The irony is that the tradition of apocalyptic thinking—religious, revolutionary or both—has often involved the fantasy of the destruction of class and caste. 

For many millenarian thinkers—including the puritans in whose pinched shoes the United States is still sneaking about—the rapture to come would be a moment of revelation, where all human sin would be swept away. 

Money would no longer matter. 

Poor and privileged alike would be judged on the riches of their souls. 

That fantasy is extrapolated in almost every modern disaster movie—the intrepid survivors are permitted to negotiate a new-made world in which all that matters is their grit, their courage, and their moral fiber. 
A great many modern political currents, especially the new right and the alt-right, are swept along by the fantasy of a great civilizational collapse which will wash away whichever injustice most bothers you, whether that be unfettered corporate influence, women getting above themselves, or both—any and every humiliation heaped on the otherwise empty tables of men who had expected more from their lives, economic humiliations that are served up and spat back out as racism, sexism, and bigotry. 

For these men, the end of the world sounds like a pretty good deal. 

More and more, it is only by imagining the end of the world that we can imagine the end of capitalism in its current form. This remains true even when it is patently obvious that civilizational collapse might only be survivable by the elite.
When it was announced that the Doomsday Clock had moved closer to midnight, I panicked for an entire day before realizing that, like a great many people, I didn’t know what the Doomsday Clock actually was.

 In case you were wondering, it’s not actually a real clock. 

It’s a visual representation of certain scientists’ estimation of how close human society is to catastrophe, published on the front cover of the Bulletin of the Atomic Scientists since 1947—a genius exercise in metonymy and public relations conceived in an age when the problem was not that people were panicking about the end of the world, but that they weren’t panicking enough. 

There is no sympathetic magic at play: if a drunk sub-editor got into the layout program and moved the portentous second hand all the way to Zero Hour on a whim, no rockets would fire of their own accord. 

This apocalypse is still within our power to prevent—and that starts with abandoning the apocalyptic mindset.
It is hard to outline the contours of a future you have never been allowed to imagine—one that is both different from today but accessible from it, too. 

The best we have been permitted to hope for is that the status quo be scraped to the edges of the present for as long as it lasts—a vote to run the knife around the empty jar of neoliberal aspiration and hope there’s enough to cover our asses.

 If people cannot imagine a future for themselves, all they can measure is what they’ve lost. 

Those who believe in the future are left, as they always were, with the responsibility of creating it, and that begins with an act of faith—not just that the future will be survivable, but that it might, somehow, maybe, be an exciting place to live. 
“Every ruthless criticism of current politics should be tied in some way to an example of how we could do things better,” said Newitz. “I realize that’s a tall order, especially when positive visions often feel like wishful thinking rather than direct action. Nevertheless we need to know what we are fighting for to retain our sense of hope. We need maps of where we are going, not just fire to burn it all down.”

Press link for more: The Baffler.com

Ocean Waves Crashing on Seawall

Irreversible Threshold of #ClimateChange 

IN LATE 2015, a chilling report by scientists for
the International Cryosphere Climate Initiative
on 

“Thresholds and closing windows: Risks of irreversible cryosphere climate change”

Warned that the Paris commitments will not prevent the Earth 

“crossing into the zone of irreversible thresholds”


In polar and mountain glacier regions, and that crossing these boundaries may 

“result in processes that cannot be halted unless temperatures return to levels below pre-industrial” 

The report says it is not well understood outside the scientific community that cryosphere dynamics are slow to manifest but once triggered “inevitably forces the Earth’s climate system into a new state, one that most scientists believe has not existed for 35–50 million years” 


Ian Howat, associate professor of earth sciences at Ohio State University, says: 

“It’s generally accepted that it’s no longer a question of whether the West Antarctic Ice Sheet will melt, it’s a question of when. 

This kind of rifting (cracking) behaviour provides another mechanism for rapid retreat of these glaciers, adding to the probability that we may see significant collapse of West Antarctica in our lifetimes.”


The scientists I have communicated with take the view that Rignot, Mouginot et al. is a credible paper and, together with the evidence published since, it would be prudent to accept that WAIS has very likely passed its tipping point for mass deglaciation, with big consequences for global sea level rise (SLR). 

DeConto and Pollard project more than a metre of SLR from Antarctica this century. 

This tallies with the Hanse, Sato et al scenario, which is also consistent with the findings of Phipps, Fogwill and Turney.

The reality of multi-metre SLRs is not if, but how soon. 

“The natural state of the Earth with present CO2 levels is one with sea levels about 70 feet (21 metres) higher than now” 

says Prof. Kenneth G. Miller. 

Other research scientists agree it is likely to be more than 20 metres over the longer term.

So how much could we expect sea levels to rise this century?

OVER TWO METRES

Press link for more: media.wix.com

img_2456-2

We’re at War to save the planet! #auspol #climatechange #science 

By Paul Mason

It hits you in the face and clings to you. 

It makes tall buildings whine as their air conditioning plants struggle to cope.

 It makes the streets deserted and the ice-cold salons of corner pubs get crowded with people who don’t like beer. 

It is the Aussie heatwave: and it is no joke.

Temperatures in the western suburbs of Sydney, far from the upmarket beachside glamour, reached 47C (117F) last week, topping the 44C I experienced there the week before.

 For reference, if it reached 47C in the middle of the Sahara desert, that would be an unusually hot day.
For Sydney, 2017 was the hottest January on record. 

This after 2016 was declared the world’s hottest year on record. 

Climate change, even in some developed societies, is becoming climate disruption – and according to a UN report, one of the biggest disruptions may only now be getting under way.

El Niño, a temperature change in the Pacific ocean that happens cyclically, may have begun interacting with the long-term process of global warming, with catastrophic results.
Let’s start by admitting the science is not conclusive. 

El Niño disrupts the normal pattern by which warm water flows westwards across the Pacific, pulling the wind in the same direction; it creates storms off South America and droughts – together with extreme temperatures – in places such as Australia. 

It is an irregular cycle, lasting between two and seven years, and therefore can only be theorised using models.
Some of these models predict that, because of climate change, El Niño will happen with increased frequency – possibly double. 

Others predict the effects will become more devastating, due to the way the sub-systems within El Niño react with each other as the air and sea warm.
What cannot be disputed is that the most recent El Niño in 2015/16 contributed to the extreme weather patterns of the past 18 months, hiking global temperatures that were already setting records.

 (Although, such is the level of rising, both 2015 and 2016 would have still been the hottest ever without El Niño.) 

Sixty million people were “severely affected” according to the UN, while 23 countries – some of which no longer aid recipients – had to call for urgent humanitarian aid. 


The catastrophe prompted the head of the World Meteorological Association to warn: 

“This naturally occurring El Niño event and human-induced climate change may interact and modify each other in ways that we have never before experienced.”
The warning was enough to prompt the UN to issue a global action plan, with early warning systems, beefed-up aid networks and disaster relief preparation, and calls for developing countries to “climate proof” their economic plans.
Compare all this – the science, the modelling, the economic foresight and the attempt to design multilateral blueprint – with the actions of the jackass who runs Australia’s finance ministry.

Scott Morrison barged into the parliament chamber to wave a lump of coal at the Labor and Green opposition benches, taunting them: 

“Don’t be afraid, don’t be scared. 

It’s coal. 

It was dug up by men and women who work in the electorate of those who sit opposite.” 

Coal, argues the Australian conservative government, has given the economy “competitive energy advantage for more than 100 years”. 

Labor and the Greens had called, after the Paris climate accord, for an orderly shutdown of the coal-fired power stations that produce 60% of the country’s energy.
The Aussie culture war over coal is being fuelled by the resurgence of the white-supremacist One Nation party, led by Pauline Hanson, which is pressuring mainstream conservatives to drop commitments to the Paris accord and, instead, launch a “royal commission into the corruption of climate science”, which its members believe is a money-making scam.
All over the world, know-nothing xenophobes are claiming – without evidence – that climate science is rigged. 

Their goal is to defend coal-burning energy, promote fracking, suppress the development of renewable energies and shatter the multilateral Paris agreement of 2015.


Opposition to climate science has become not just the badge of honour for far-right politicians like Ukip’s Paul Nuttall.

 It has become the central tenet of their appeal to unreason.
People facing increased fuel bills, new taxes on methane-producing cattle farms, dimmer light bulbs and the arrival of wind and wave technologies in traditional landscapes will naturally ask: is this really needed? 

Their inner idiot wishes it were not. 

For most of us, the inner rationalist is strong enough to counteract that wish.

What distinguishes the core of the rightwing populist electorate is its gullibility to idiocy-promoting rhetoric against climate science. 

They want to be harangued by a leader who tells them their racism is rational, in the same way they want leaders who tell them the science behind climate change is bunk.


Well, in Australia, people are quickly finding out where such rhetoric gets you: more devastating bushfires; a longer fire season; more extreme hot days; longer droughts. And an energy grid so overloaded with demands from air conditioning systems that it is struggling to cope.
And, iIf the pessimists among climate scientists are right, and the general rise in temperature has begun to destabilise and accentuate the El Niño effects, this is just the start.
The world is reeling from the election victory of Donald Trump, who has called climate science a hoax.

 Dutch voters look set to reward Geert Wilders, whose one-page election programme promises “no more money for development, windmills, art, innovation or broadcasting”, with first place in the election. 

In France, 27% of voters are currently backing the Front National, a party determined to take the country out of the Paris accord, which it sees as “a communist project”.
The struggle against the nationalist right must, in all countries, combine careful listening to the social and cultural grievances of those on its periphery with relentless stigmatisation of the idiocy, selfishness and racism of the leaders and political activists at its core.
It’s time to overcome queasiness and restraint. 

We, the liberal and progressive people of the world, are at war with the far right to save the earth. 
The extreme temperatures and climate-related disasters of the past 24 months mean this is not some abstract struggle about science or values: it’s about the immediate fate of 60 million people still recovering from a disaster.

Press link for more: The Guardian.com

img_2429-1

European leaders warn of War #climatechange #auspol 

Among the 21st-century threats posed by climate change — rising seas, melting permafrost and superstorms — European leaders are warning of a last-century risk they know all too well: War.
Focusing too narrowly on the environmental consequences of global warming underestimates the military threats, top European and United Nations officials said at a global security conference in Munich this weekend. 

Their warnings follow the conclusions of defense and intelligence agencies that climate change could trigger resources and border conflicts.

“Climate change is a threat multiplier that leads to social upheaval and possibly even armed conflict,” the UN’s top climate official, Patricia Espinosa Cantellano, said at the conference, which was attended by the U.S. secretaries of defense and homeland security, James Mattis and John Kelly.

Even as European Union countries struggle to assimilate millions of African and Middle Eastern migrants and refugees, security officials are bracing for more of the same in the future. 

Secretary General Antonio Guterra named climate change and population growth as the two most serious “megatrends” threatening international peace and stability.
Hotter Than Ever
“Ground zero” for armed conflict over the climate will be the Arctic, where record-high temperatures are melting ice and revealing natural resources that some countries might be willing to fight for, Finland’s President Sauli Niinisto said on a panel.

“We have already seen flag planting and already some quarrels on the borderlines,” Niinisto said, pointing to new Russian military bases on its Arctic border. “Tensions will rise.”
The Arctic climate paradox — where countries could fight for rights to extract the very fossil fuels that would cause even more global warming — underscores energy’s role as a cause and potential moderator of climate change, according to Niinisto. 
For Russia, the world’s biggest energy supplier, European nations switching to renewables represents an economic threat. 

At the same time, European over-reliance on Russian energy exposes them to coercion, according to Kelly Gallagher-Sims, a former climate and energy adviser to President Barack Obama.


Peaceful Coexistence
“Climate change is already exacerbating existing stresses that contribute to instability and insecurity,” Gallagher-Sims told Bloomberg last week before leading a policy meeting on Arctic security at the Fletcher School at Tufts University near Boston. 

“The main relationship between renewable energy and trans-Atlantic security” is that clean power “permits Europe to rely less on Russian gas,” she said.
For their part, Russian leaders in Munich said they want peaceful coexistence with Europe and will abide by the Paris accord on climate change — even if it’s unlikely they’ll try convincing U.S. President Donald Trump to do the same.
It’s not clear when and if Trump will make good on his frequent campaign promises to pull the U.S. out of the Paris accord, a 2015 UN agreement to curtail greenhouse-gas emissions that was adopted by nearly 200 countries. 

Since he took office, the administration has rolled back U.S. rules to combat climate change and eased restrictions on fossil-fuel companies.
U.S. Democratic Senator Sheldon Whitehouse, a member of the committee on the environment and public works, told officials in the Bavarian capital they may have to fight to preserve the 2015 Paris agreement from global warming skeptics in the White House.
“The response of the international community will be significant,” Whitehouse said. 

While the probability of abandoning Paris may be small, they “decrease further if the response of the international community” to the U.S.

 “is not only, don’t you dare but, that there’ll be consequences in other areas” if you leave.

Press link for more: Finance.yahoo.com

img_2419-3

Climate Change One of Mankind’s Most Serious Threats. #Auspol 

Catastrophic Climate Change Makes List of Mankind’s Most Serious Threats
Extreme climate change is among the greatest threats facing mankind, says a new study released by the Global Challenges Foundation


Still politicians (Who receive huge donations from coal miners) push coal ignoring climate scientists.

Scott Morrison  Liberal Party in the Australian Parilament 
The GCF works to raise awareness of Global Catastrophic Risks, defined as events that would end the lives of roughly 10 percent or more of the global population, or do comparable damage.


The industrial landscape across the Dee Estuary at sunrise as steam rises from Deeside power station, Shotton Steelworks and other heavy industrial plants on April 13, 2016 in Flint, Wales. (Christopher Furlong/Getty Images)

The list includes “significant ongoing risks” such as nuclear war and worldwide disease outbreaks but also highlights several scenarios that are “unlikely today but will become significantly more likely in the coming decades,”such as the continued rise of artificial intelligence. 

It’s there, among the emerging risks, that the study places the threat of catastrophic climate change.

Politician addicted to coal donations

Barnaby Joyce National Party in the Australian Parliament 
Even if we succeed in limiting emissions, the study says, scientists expect significant climate change to occur, which could lead to a host of global challenges including environmental degradation, migration, and the possibility of resource conflict.

The study goes on to say that, in a worse case scenario, global warming could top 6 degrees Celsius, which would leave “large swathes of the planet dramatically less habitable.”
“The precise levels of climate change sufficient to trigger tipping points – thresholds for abrupt and irreversible change – remain uncertain,“ the study says, “but the risk associated with crossing multiple tipping points in the earth system or in interlinked human and natural systems increases with rising temperature.”

The main goal of the study is to raise awareness of these potential catastrophes and encourage greater global cooperation to keep them at bay.
(MORE: Climate Change Poses Urgent Health Risk, White House Says)
“Market and political distortions mean that these risks are likely to be systematically neglected by many actors,” the study says.
The study suggests there are three main ways to reduce the risks from climate change: adaptation to climate change, abatement of emissions, and geo-engineering. Research communities should increase their focus on understanding the pathways to and the likelihood of catastrophic climate change, and possible ways to respond, the study says.
MORE ON WEATHER.COM: Before and After Shots of Rising Sea Levels

This photo illustration depicts Durban, South Africa, after a 2 degrees Celsius increase in global temperature, a threshold that, if surpassed, could usher in catastrophic global impacts from climate change. (Credit: sealevel.climatecentral.org/Nickolay Lamm) 
Press link for More: Weather.com

img_2458-1

Clean Coal is an OXYMORON #auspol 

‘Clean coal’ is an oxymoron


Rep. Ralph Watts’ Iowa View piece [Trump can bring back coal, Jan. 27] tries to support the continued use of coal by using Trump’s success to justify junk science and the status quo. 

The EPA and the open-minded can see the truth in climate change, and that we should make every effort to save our planet. 


It is ludicrous to save jobs for coal miners but in the process speed up climate change, which is caused by increasing levels of CO2 from the burning and processing of fossil fuels. 

The level of CO2 in our atmosphere has gone from 280 to 400 parts per million in my lifetime.

 That number had not been above 280 in 400,000 years.


I am a mechanical engineer and worked for our local utility on various projects at coal-fired power plants for 35 years. Clean coal is almost an oxymoron. 

To be completely pollution-free, the CO2 from burning coal would have to be captured and disposed of, and that is expensive and requires a lot of power and equipment.


Trump and his fellow travelers will set our environmental programs back more than the the four years he may be be in office. 

The effects of climate change are minor now, but the weather changes and possible anarchy 20 years from now won’t be nice. 

I’m glad I won’t be here to see it. 

What’s sad is it could be prevented.
— Tom Benge, Bettendorf

Press link for more: Desmoine Register

Ocean Waves Crashing on Seawall

Global warming continues as ice hits record lows #climatechange #auspol 

Global heat continues, sea ice hits new record lows

The extended spell of high global temperatures is continuing, with the Arctic witnessing exceptional warmth and – as a result – record low Arctic sea ice volumes for this time of year. Antarctic sea ice extent is also the lowest on record.
Reports from the U.S. National Oceanic and Atmospheric Administration and NASA’s Goddard Institute for Space Studies said that global average surface temperatures for the month of January were the third highest on record, after January 2016 and January 2007. NOAA said that the average temperature was 0.88°C above the 20th century average of 12°C. The European Centre for Medium Range Weather Forecasts, Copernicus Climate Change Service, said it was the second warmest.
Natural climate variability – such as El Niño and La Niña – mean that the globe will not break new temperature records every month or every year. More significant than the individual monthly rankings is the long-term trend of rising temperatures and climate change indicators such as CO2 concentrations (406.13 parts per million at the benchmark Mauna Loa Observatory in January compared to 402.52 ppm in January 2016, according to NOAA’s Earth Systems Research Laboratory).
The largest positive temperature departures from average in January were seen across the eastern half of the contiguous U.S.A, Canada, and in particular the Arctic. The high Arctic temperatures also persisted in the early part of February.
At least three times so far this winter, the Arctic has witnessed the Polar equivalent of a heatwave, with powerful Atlantic storms driving an influx of warm, moist air and increasing temperatures to near freezing point. The temperature in the Arctic archipelago of Svalbard, north of Norway, topped 4.1°C on 7 February. The world’s northernmost land station, Kap Jessup on the tip of Greenland, swung from -22°C to +2°C in 12 hours between 9 and 10 February, according to the Danish Meterological Institute.
“Temperatures in the Arctic are quite remarkable and very alarming,” said World Climate Research Programme Director David Carlson. “The rate of change in the Arctic and resulting shifts in wider atmospheric circulation patterns, which affect weather in other parts of the world, are pushing climate science to its limits.”
As a result of waves in the jet stream – the fast moving band of air which helps regulate temperatures – much of Europe, the Arabian peninsular and North Africa were unusually cold, as were parts of Siberia and the western USA.



Jan 2017 Antarctic sea ice extent: NSIDCArctic sea ice extent, Jan 2015. NSIDC
Sea ice extent was the lowest on the 38-year-old satellite record for the month of January, both at the Arctic and Antarctic, according to both the U.S. National Snow and Ice Data Center and Germany’s Sea ice Portal operated by the Alfred-Wegener-Institut.
Arctic sea ice extent averaged 13.38 million square kilometres in January, according to NSIDC. This is 260,000 square kilometersbelow January 2016, the previous lowest January extent – an area bigger than the size of the United Kingdom. It was 1.26 million square kilometers (the size of South Africa) below the January 1981 to 2010 long-term average.
“The recovery period for Arctic sea ice is normally in the winter, when it gains both in volume and extent. The recovery this winter has been fragile, at best, and there were some days in January when temperatures were actually above melting point,” said Mr Carlson. “This will have serious implications for Arctic sea ice extent in summer as well as for the global climate system. What happens at the Poles does not stay at the Poles.”
Antarctic sea ice extent was also the lowest on record. A change in wind patterns, which normally spread out the ice, contracted it instead.

Press link for more: WMO

img_2360-3

Scientists get a sobering picture of where we are headed. #climatechange #auspol 

By Nicola Jones

Last year marked the first time in several million years that atmospheric concentrations of CO2 passed 400 parts per million. 

By looking at what Earth’s climate was like in previous eras of high CO2 levels, scientists are getting a sobering picture of where we are headed.
Last year will go down in history as the year when the planet’s atmosphere broke a startling record: 400 parts per million of carbon dioxide. 

The last time the planet’s air was so rich in CO2 was millions of years ago, back before early predecessors to humans were likely wielding stone tools; the world was a few degrees hotter back then, and melted ice put sea levels tens of meters higher.

“We’re in a new era,” says Ralph Keeling, director of the Scripps Institution of Oceanography’s CO2 Program in San Diego. “And it’s going fast. 

We’re going to touch up against 410 pretty soon.”
There’s nothing particularly magic about the number 400.

 But for environmental scientists and advocates grappling with the invisible, intangible threat of rising carbon dioxide levels in the atmosphere, this symbolic target has served as a clear red line into a danger zone of climate change.
When scientists (specifically, Ralph Keeling’s father) first started measuring atmospheric CO2 consistently in 1958, at the pristine Mauna Loa mountaintop observatory in Hawaii, the CO2 level stood at 316 parts per million (ppm), just a little higher than the pre-industrial level of 280 ppm. 

400 was simply the next big, round number looming in our future.
But as humans kept digging up carbon out of the ground and burning it for fuel, CO2 levels sped faster and faster toward that target. 

In May 2013, at the time of the usual annual maximum of CO2, the air briefly tipped over the 400 ppm mark for the first time in several million years. 

In 2014, it stayed above 400 ppm for the whole month of April. 

By 2015, the annual average was above 400 ppm. 

And in September 2016, the usual annual low skimmed above 400 ppm for the first time, keeping air concentrations above that symbolic red line all year.

Concentrations of carbon dioxide in Earth’s atmosphere have risen rapidly since measurements began nearly 60 years ago, climbing from 316 parts per million (ppm) in 1958 to more than 400 ppm today.

 (Levels a few centuries ago held steady at about 280 ppm.)


Concentrations of carbon dioxide in Earth’s atmosphere have risen rapidly since measurements began nearly 60 years ago, climbing from 316 parts per million (ppm) in 1958 to more than 400 ppm today. SCRIPPS INSTITUTION OF OCEANOGRAPHY

Global temperatures have risen in parallel, with 2016 standing as the hottest year since records started in 1880: 2016 was about 1.1 degrees C (2°F) warmer than pre-industrial levels. 

The 2015 Paris Agreement, the latest international climate treaty, is aiming to keep the global temperature increase well below 2 degrees C, and hopefully limit it to 1.5 degrees.

At the current rate of growth in CO2, levels will hit 500 ppm within 50 years, putting us on track to reach temperature boosts of perhaps more than 3 degrees C (5.4°F) — a level that climate scientists say would cause bouts of extreme weather and sea level rise that would endanger global food supplies, cause disruptive mass migrations, and even destroy the Amazon rainforest through drought and fire.
Each landmark event has given scientists and environmentalists a reason to restate their worries about what humans are doing to the climate.

 “Reaching 400 ppm is a stark reminder that the world is still not on a track to limit CO2 emissions and therefore climate impacts,” said Annmarie Eldering, deputy project scientist for NASA’s Orbiting Carbon Observatory-2 satellite mission at the Jet Propulsion Laboratory. 

“Passing this mark should motivate us to advocate for focused efforts to reduce emissions across the globe.
THE MODERN MEASURE
Back in the 1950s, scientist Charles David Keeling (Ralph Keeling’s father) chose the Mauna Loa volcano site to measure CO2 because it is a good spot to see large atmospheric averages. 

Rising to 3,400 meters (11,155 feet) in the middle of the ocean, Mauna Loa samples an air mass that has already been well mixed from the inputs and outputs of CO2 far below and far away. 

And the site, being a volcano, is surrounded by many miles of bare lava, helping to eliminate wobbles in the measurement from the “breathing” of nearby plants.
The start of Keeling’s effort was well timed: the 1950s was also when man-made emissions really began to take off, going from about 5 billion tons of CO2 per year in 1950 to more than 35 billion tons per year today.

 Natural sources of CO2, from forest fires to soil and plant respiration and decomposition, are much bigger than that — about 30 times larger than what mankind produces each year. 

But natural sinks, like plant growth and the oceans, tend to soak that up. 

The excess produced by mankind’s thirst for energy is what makes the CO2 concentration in the air go up and up. Once in the air, that gas can stay there for millennia.
The so-called Keeling Curve that plots this rise has an annual wiggle because the entire planet inhales and exhales like a giant living being. 

In the Northern Hemisphere (where the Mauna Loa observatory is based, and also where most of the planet’s landmass and land-based plants sit), the air in spring is filled with the CO2 released by soil microbes in the thawing snow, and by autumn the CO2 has been vacuumed up by a burst of summer plant life; hence the annual high in May and low in September.
While Mauna Loa has become the global standard for CO2 levels, measurements taken in other places have confirmed the Mauna Loa results. 

NOAA’s network of marine surface stations, and even a monitoring station in the remote, pristine Antarctic, all passed the 400 ppm hurdle in 2016. 

NASA’s Orbiting Carbon Observatory-2 shows the planet hovering around 400 ppm, with variation from one place to another, mainly thanks to atmospheric circulation patterns.
Atmospheric concentrations of CO2 are now above 400 parts per million year-round globally.

Atmospheric concentrations of CO2 surpassed 400 ppm at the South Pole last year.

Atmospheric concentrations of CO2 are now above 400 parts per million year-round globally [left], and last year surpassed 400 ppm at the South Pole. NOAA

THE LONG VIEW
In the big picture, 400 ppm is a low-to-middling concentration of CO2 for the planet Earth.
Some 500 million years ago, when the number of living things in the oceans exploded and creatures first stepped on land, the ancient atmosphere happened to be rich with about 7,000 ppm of carbon dioxide.

 Earth was very different back then: the Sun was cooler, our planet was in a different phase of its orbital cycles, and the continents were lumped together differently, changing ocean currents and the amount of ice on land. 

The planet was maybe as much as 10 degrees C (18°F) warmer than today, which might seem surprisingly cool for that level of greenhouse gas; with so many factors at play, the link between CO2 and temperature isn’t always easy to see. 

But researchers have confirmed that CO2 was indeed a major driver of the planet’s thermostat over the past 500 million years: large continental ice sheets formed and sea levels dropped when the atmosphere was low in CO2, for example.
Thanks to earth-shaking, slow-moving forces like plate tectonics, mountain building, and rock weathering — which absorb CO2 — atmospheric concentration of CO2 generally declined by about 13 ppm per million years, with a few major wobbles. 

As large plants evolved and became common about 350 million years ago, for example, their roots dug into the ground and sped up weathering processes that trap atmospheric carbon in rocks like limestone. This might have triggered a massive dip in CO2 levels and a glaciation 300 million years ago. That was eventually followed by a period of massive volcanic activity as the supercontinent ripped apart, spewing out enough CO2 to more than double its concentration in the air. 

CO2 levels over the last 400 million years. 


The last time CO2 levels were as high as today’s was about 3 million years ago. 

At right are different projections of future CO2 levels from the Intergovernmental Panel on Climate Change; under the worst-case scenario, CO2 concentrations would rise to 2,000 ppm by 2500 from 400 ppm today.

CO2 levels over the last 400 million years. The last time CO2 levels were as high as today’s was about 3 million years ago. FOSTER ET AL/DESCENT INTO THE ICEHOUSE

The last time the planet had a concentration of 300 to 400 ppm of CO2 in the atmosphere was during the mid-Pliocene, 3 million years ago — recently enough for the planet to be not radically different than it is today. Back then, temperatures were 2 degrees C to 3 degrees C (3.6 to 5.4°F) above pre-industrial temperatures (though more than 10 degrees C hotter in the Arctic), and sea levels were at least 15-25 meters higher. Forest grew in the Canadian north and grasslands abounded worldwide; the Sahara was probably covered in vegetation. Homo habilis (aka “handy man”), the first species in the Homo line and probably the first stone-tool users, got a taste of this climate as they arrived on the scene 2.8 million years ago. (Homo sapiens didn’t show up until 400,000 years ago at the earliest.)
To find a time when the planet’s air was consistently above 400 ppm you have to look much farther back to the warm part of the Miocene, some 16 million years ago, or the Early Oligocene, about 25 million years ago, when Earth was a very different place and its climate totally dissimilar from what we might expect today.
There’s a lot of debate about both temperatures and CO2 levels from millions of years ago. But the evidence is much firmer for the last 800,000 years, when ice cores show that CO2 concentrations stayed tight between 180 and 290 ppm, hovering at around 280 ppm for some 10,000 years before the industrial revolution hit. (There have been eight glacial cycles over these past 800,000 years, mostly driven by wobbles in the Earth’s orbit that run on 41,000 and 100,000 year timescales). This is the benchmark against which scientists usually note the unprecedented modern rise of CO2.
Frighteningly, this modern rise of CO2 is also accelerating at an unusual rate. 


In the late 1950s, the annual rate of increase was about 0.7 ppm per year; from 2005-2014 it was about 2.1 ppm per year. 
Concentrations of atmospheric CO2 soared in recent decades as industrialized nations continued to pour carbon dioxide into the atmosphere and emissions in developing nations rose steeply. As this chart shows, the annual rate of CO2 increase in the early 1960s was about 0.7 ppm a year, compared to 2.1 ppm per year from 2005 to 2014.

Concentrations of atmospheric CO2 soared in recent decades as industrialized nations continued to pour carbon dioxide into the atmosphere and emissions in developing nations rose steeply. NOAA/SCRIPPS INSTITUTION OF OCEANOGRAPHY

Paleo records hint that it usually takes much longer to shift CO2 concentrations in the atmosphere; although researchers can’t see what happened on time frames as short as decades in the distant past, the fastest blips they can see were an order of magnitude slower than what’s happening today. These were typically associated with some major stress like a mass extinction, notes Dana Royer, a climatologist at Wesleyan University. During the end-Triassic extinction 200 million years ago, for example, CO2 values jumped from about 1,300 ppm to 3,500 ppm thanks to massive volcanic eruptions in what is now the central Atlantic. That took somewhere between 1,000 to 20,000 years. Today we could conceivably change our atmosphere by thousands of parts per million in just a couple of hundred years. There’s nothing anywhere near that in the ice core records, says Keeling.
FUTURE SCENARIOS
Though 400 seems a big, scary number for now, CO2 concentrations could easily pass 500 ppm in the coming decades, and even reach 2,000 by 2250, if CO2 emissions are not brought under control.
Predicting future CO2 levels in the atmosphere is complicated; even if we know what will happen to man-made emissions, which depends on international policies and technological developments, the planet’s network of natural sources and sinks is vast and interlinked. Some plants grow faster in a carbon-rich world; deforestation takes some plants out of the equation; the ocean stores different amounts depending on its temperature and circulation.
If you completely ignore the questions of what society might do to curb emissions, and what the planet might do to suck them up, and just look purely mathematically at where the Keeling Curve is going, levels cross 500 ppm around 2050.
The most recent Intergovernmental Panel on Climate Change (IPCC) report from 2013 made a more realistic estimate of what might happen, and what the temperature outcome would be.
In the IPCC’s most pessimistic scenario, where the population booms, technology stagnates, and emissions keep rising, the atmosphere gets to a startling 2,000 ppm by about 2250. (All the IPCC scenarios presume that mankind’s impact on the atmosphere levels out by 2300.) That gives us an atmosphere last seen during the Jurassic when dinosaurs roamed, and causes an apocalyptic temperature rise of perhaps 9 degrees C (16°F).
In the next-most-pessimistic scenario, emissions peak around 2080 and then decline, leading to an atmosphere of about 700 ppm and probable temperature increases of more than 3 degrees C.
In the most optimistic scenario, where emissions peak now (2010-2020) and start to decline, with humans actually sucking more carbon out of the air than they produce by 2070, the atmosphere dips back down below 400 ppm somewhere between 2100 and 2200 and the temperature increase is held under 1 degrees C in the long term. 
Projected concentrations of CO2 under different emissions scenarios, extending to the year 2500.


Projected temperature increases under different emissions scenarios, extending to the year 2500.

These graphs from the Intergovernmental Panel on Climate Change show projected concentrations of CO2 [left] and projected temperature increases under different emissions scenarios, extending to the year 2500. IPCC

SLOWING DOWN
If man-made emissions were to magically drop to zero tomorrow, the concentration of CO2 in the atmosphere would start to level out immediately — but it would probably take about a decade to detect this slowdown against the background of the natural carbon cycle, according to Keeling.
Even with zero emissions, getting back to pre-industrial levels of 280 ppm is “sort of a 10,000-year proposition,” says Keeling. Atmospheric concentrations would drop relatively quickly at first, as the surface ocean sucked up a good chunk of the excess carbon in the air (that would take on the order of 100 years); then some atmospheric carbon would work its way into the deeper ocean (in about 1,000 years); then the planet’s carbon cycle — for example, the weathering of rocks — would soak up most of the rest over about 10,000 years.
It’s encouraging to see that, since 2014, total emissions have stayed basically flat despite continued growth in the global economy, mainly thanks to reduced coal burning in China. But steady emissions are a far cry from reduced emissions, zero emissions, or even “negative emissions” (where humanity uses technology to soak up more than we emit). 
​Real emissions plotted against the IPCC’s projections of CO2 emissions and temperature increases through 2100. Emissions-reduction pledges made by various nations at the U.N. Paris climate conference in 2015 will likely lead to a temperature rise by 2100 of roughly 3 degrees C, exceeding the U.N. target of holding increases below 2 degrees C.

Real emissions plotted against the IPCC’s projections of CO2 emissions and temperature increases through 2100. GLOBAL CARBON PROJECT

The non-profit Global Carbon Project estimates that the planet’s current trajectory of emissions is on track to meet the national commitments made as part of the Paris Agreement up to 2030, but not to meet the long-term goal of stabilizing the climate system below 2 degrees C above pre-industrial levels. So that puts us somewhere in the middle zone of the IPCC’s projections; right now it’s hard to tell which long-term path we are heading for, although the most optimistic scenario — with emissions starting to decline significantly in the next few years — is arguably out of reach.
“If humanity wishes to preserve a planet similar to that on which civilization developed and to which life on Earth is adapted… CO2 will need to be reduced… to at most 350 ppm,” Columbia University climate guru James Hansen has said. We sailed past that target in about 1990, and it will take a gargantuan effort to turn back the clock.

 Nicola Jones

Nicola Jones is a freelance journalist based in Pemberton, British Columbia, just outside of Vancouver. With a background in chemistry and oceanography, she writes about the physical sciences, most often for the journal Nature. She has also contributed to Scientific American, Globe and Mail, and New Scientist and serves as the science journalist in residence at the University of British Columbia. 

Press link for more: E360.yale.edu

Ocean Waves Crashing on Seawall

Sudden reversal in Antarctic sea ice. #auspol #climatechange 

Sudden reversal in Antarctic sea ice complicates argument by climate-change doubters

Arctic sea ice

In recent years, one of climate change doubters’ favorite arguments has involved the floating sea ice around Antarctica. It’s growing, they contended – and that raises doubts about our understanding of human-induced climate change.
To this, climate scientists always responded: Not so fast. Floating sea ice in another cold place, the Arctic, is clearly shrinking, as are Arctic and Antarctic glaciers, and we don’t fully understand all the drivers behind the vast and complex Antarctic sea ice system. So don’t leap to the conclusion that odd behavior in floating Antarctic ice, which indeed has been growing slightly in recent years, undermines climate concerns.
Now, though, the argument for doubters just got even more complicated. After seeing a record high for total extent in the year 2014, Antarctic sea ice had been running very low in late 2016 and early 2017. And now, as of data recorded on Monday and Tuesday by the National Snow and Ice Data Center, the extent of Antarctic sea ice now appears to have hit a record low (although scientists still have to confirm this and have not made an official announcement yet).
It’s summer in Antarctica right now, and floating sea ice on Monday only covered 2.287 million square kilometers, according to “near-real-time data” from the National Snow and Ice Data Center. If that’s correct, that would barely edge out the previous record low of 2.290 million square kilometers on Feb. 27, 1997. The records go back to 1979.
On Tuesday, meanwhile, the ice extent shrank further down to 2.259 million square kilometers – underscoring the likelihood of a record, once the data is confirmed.
“Record low sea ice extent in the Arctic has, in a sense, become old news,” said Mark Serreze, director of the National Snow and Ice Data Center. “But now the Antarctic is getting into the act. There are certainly many questions out there as to why Antarctic sea ice is also at a record low, but we can’t deny the reality that things are changing and they are changing fast.”
Sea ice is almost completely absent right now along the coast of West Antarctica in particular, a region where huge and fast-retreating glaciers have raised major concerns about potential sea-level rise. It’s unclear if lack of sea ice in the area might also signal that the oceans are having an effect on the continent’s marine-based glaciers.
It’s also important to note that it’s still only mid-February, so it could be that Antarctic sea will lose more ice before it begins to refreeze and expand again, according to its seasonal cycle. So what now appears to be a new record low may not be the record for very long. We will have to await a formal confirmation of all of this from the center, which may not come until the ice is clearly beginning to grow once again.
In the meantime, there are some interesting ideas out there about what explains the recent behavior of Antarctic sea ice. For instance, Gerald Meehl, a climate scientist at the National Center for Atmospheric Research in Boulder, Colorado, has published research suggesting that floating Antarctic ice is actually controlled in part by the state of the distant Pacific Ocean, whose influence on wind and weather patterns ultimately stretches all the way down to the Antarctic.
That study focused on a natural climate wobble called the Interdecadal Pacific Oscillation, or IPO, whose negative phase is one in which heat ends up getting buried in the Pacific Ocean, and whose positive phase unleashes it. The IPO was in a negative phase through much of the 2000s, but it may now be shifting back, Meehl says. And that could be playing a role in sea ice.
“It is consistent that a positive phase of the IPO could be associated with reduction of Antarctic sea ice extent, which is what is happening now,” Meehl commented by email. “However, given that the IPO is a decadal timescale phenomenon, and what we’re seeing now is a reduction of Antarctic sea ice that started sometime after the middle of 2016, we can’t say that Antarctic sea ice will stay at this low extent indefinitely. But the evidence from IPO connections is pointing in the right direction for a possible decadal trend toward reduced sea ice extent.”
In the end, since Antarctic sea ice was previously trending upward, the sudden reversal shouldn’t be a reason to turn on a dime and suggest that the ice is now declining – yet. Instead, it further underscores that we don’t fully understand what’s going on with this system. Which is precisely why it’s so dangerous to cite Antarctic ice to undermine the overwhelming evidence of climate change elsewhere.

Press link for more: Chicago Tribune

img_2436

It only takes 10% to cause disruption. #auspol 

When I asked whether consumer choices are an act of political rebellion, I noted that it only took a 10% cut in coal demand to radically slash the coal industry’s credit worthiness.
What if we could do the same thing for oil?

There’s good reason to assume that just such a disruption is coming, and sooner than many people think. Consider these recent headlines from around the web:
— Smart cars going 100% electric in the US (Cleantechnica)

—Sydney Airport orders 40 more electric buses (Cleantechnica – again…)

—Vattenfall (a giant Swedish utility) converting entire vehicle fleet to electric

—20% of new buses in China are now electric (yours truly)
Headlines like these are coming so thick and fast these days that we have to pick and choose which ones we write about. Individually, they are all just a blip in the global picture of oil demand, but collectively it won’t be long before they really start to add up. And when they do start to add up, it won’t take too much cut in demand to radically reshape the future prospects for oil.
Of course, all of the above stories are about adoption of existing technologies at current pricing. But what if prices were to fall further, and faster, than they have so far? Wards Auto is reporting on conversations with auto industry insiders who say electric vehicle batteries should be under $100 per kilowatt hour by 2020, and $80 not long after that. That’s a figure well below the $125 per kilowatt hour that the Department of Energy set in 2010 as a target for cost parity with internal combustion engines.
And once we reach cost parity, there’s little that can be done by dropping tax credits or removing other incentives, to slow the march to electrification.
It’s important to note, of course, that electrification isn’t the only—or even the best—way to reduce oil demand. From massive investments in cycling infrastructure to growing transit ridership in many major cities, there are plenty of other trends underway that could squeeze oil demand from all sides. And once you squeeze oil demand enough, the infrastructural, political and economic advantages that Big Oil once enjoyed quickly start to melt away.
Take, for example, gas stations. In cities with high uptake of electric vehicles, decent transit and cycle infrastructure, and restrictions on polluting vehicles, how long will it be for sales to drop far enough that the current number of gas stations are no longer viable? And once gas stations start thinning out, there’s one more reason for everyone else to abandon their gas cars too.
I look forward to revisiting this topic in ten years time. I suspect we may be pleasantly surprised at how quickly things have changed. I’ll leave the last word to Tony Seba, whose ambitious predictions about oil industry disruption I’ve written about before. In response to a recent tweet from a certain Mr Musk, Seba had this to say:
All my #CleanDisruption predictions are accelerating and it looks like they’re happening ahead of 2030! #solar #EV #batteries #selfdriving https://t.co/wnA3YliOpK
— Tony Seba (@tonyseba) February 15, 2017

I, for one, am beginning to believe he is right.

Press link for more: Treehugger.com