Geoengineering

Hope is essential to save the planet. #StopAdani #auspol 

We saved the whale. The same vision can save the planet | Susanna Rustin
Susanna RustinFriday 18 August 2017 16.00 AEST

 

Illustration by Mark Long

“Hope is essential – despair is just another form of denial,” Al Gore said last week, in an interview to promote the sequel to his 2006 climate change documentary An Inconvenient Truth. 

As well as the very bad news of Donald Trump’s science-denying presidency, An Inconvenient Sequel: Truth to Power, which opens in the UK today, brings good news: the plummeting cost of renewable electricity and the 2015 Paris climate agreement.

K

In 2017, denial of the facts of climate change – and myriad linked dangers including air and ocean pollution, famine and a refugee crisis the likes of which we can hardly imagine – is in retreat, with the Trump administration the malignant exception. 

Virtually all governments know that climate change is happening, and polls show most people do too – with those living in Latin America and sub-Saharan Africa particularly worried.

 The question is not whether global warming is happening, but what we are going to do about it. 

There are, and need to be, many answers to this. 

Gore believes the solutions to climate change are within reach, if people can only find the political will to enact them.

 Even if how to whip up sufficient zeal to make this happen remains a puzzle, his essential message is one of optimism.


Others are less sanguine. 

A widely shared article by David Wallace-Wells in New York magazine last month sketching out some worst-case scenarios included an interview with pioneering climate scientist Wally Broecker, now 84, who no longer believes even the most drastic reductions in carbon emissions are sufficient to avert disaster. 

Instead, he puts his hopes in carbon capture and geoengineering. 

Others oppose anything that smacks of a techno-fix, believing the very idea that human ingenuity can get us out of this mess is yet another form of denial.
The human reaction – or lack of one – to climate change is a subject of interest in itself.

 The novelist Amitav Ghosh wrote The Great Derangement, a book about why fiction writers mostly ignore the subject, and argued that the profound alteration of Earth’s climate is difficult to think about. 

Wallace-Wells, in New York magazine, refers to “an incredible failure of imagination”. 

Politics, supposed to help us make sense of the world, has sometimes been more hindrance than help: is climate change really an inconvenient truth, because it means we have to give up eating beef and taking long-distance flights, or a too-convenient truth for anti-capitalists who want to bring down the financial system?
Such left-right binarism, and the relentlessly partisan nature of US politics, is surely why Gore now prefers to frame climate change more as a “moral” issue than as a political one. 

But the clearest and simplest message from his decade of advocacy is the need for action at every level. 

Such action takes many forms, ranging from protests against the Dakota Access pipeline in the US to anti-fracking demonstrations in Lancashire. 

This year the Guardian in conjunction with Global Witness is documenting the deaths of people all over the world who are killed while attempting to defend the environment from damage or destruction.

In a similar vein, the Natural History Museum has chosen its revamped central hall to showcase a key moment for environmental activism. 

When it was first announced that Dippy the dinosaur would be replaced with a blue whale skeleton that had previously hung quietly among the mammals, there were grumbles.

 But a month after its grand reopening in the presence of royalty and Sir David Attenborough, the revamped museum is a smash hit with more than 115,000 visitors a week.
Partly this is because the installation of the skeleton brings Alfred Waterhouse’s 1870s terracotta building, with its marvellous moulded monkeys, back to life in the most magnificent way. 

Whereas visitors once mostly stuck to the ground floor until they joined the procession to the dinosaurs, the aerial position of the whale bones now draws people upstairs. From an overcrowded lobby, Hintze Hall has been raised into a wondrous public space.
But the whale, which died as a result of being stranded off the coast of Ireland in 1891, is more than a 19th-century relic. 

What the museum has done by giving this vast, dead creature such prominence is to issue a warning and a call to action. 

And it makes no bones about this: “Rescued from the brink of extinction in the 1960s, the blue whale is a symbol of hope for the future of the natural world,” says the information panel. 

“Threats such as marine pollution and climate change linger – the blue whale remains a vulnerable and endangered species.”


Like the hole in the ozone layer over Antarctica, which stopped growing after a 1987 treaty phased out chlorofluorocarbons (CFCs), whale conservation is one of the global environmental movement’s greatest success stories. 

Blue whales were critically endangered, until activists persuaded governments to legislate to save them, and the museum’s new exhibit is called Hope.
Optimism alone won’t halt climate change, or prevent further extinctions. 

But like Gore, the director of the Natural History Museum, Michael Dixon, and his colleagues understand that the most vital currency of the environmental movement is hope.

 With the knowledge we now have of climate change’s likely consequences, the alternative is nihilism.
• Susanna Rustin is a Guardian columnist

Press link for more: The Guardian

Messing with the Earth’s climate is risky business. #StopAdani #auspol 

Can we cure Climate Change? 

Scientists Debate If We Should

By Elana Glowatz
Scientists are debating if there is a way to stop Earth’s climate from changing or even help the planet cool down — and, if they can do such work, whether or not they should.
Offsetting the effect of greenhouse gas emissions is a complicated science called geoengineering. 

In ideas that have been proposed, experts would either have to remove carbon dioxide from the atmosphere, or tinker with the system so that more of the sun’s radiation reflects back into space or more heat can escape the Earth. 

But any effort to cool off the planet could have unintended consequences, assuming it is first performed accurately and effectively. 

Three separate articles just published in the journal Science focus on those concepts and concerns.

Read: When Will It Rain in the Middle East? 

Climate Study Says in 10,000 Years
Scientists from the Carnegie Climate Geoengineering Governance Initiative warn in their article that the world will have to work together to choose a solution, rather than allowing a single person, country or small group of countries to make a choice and run with it.

 That could “further destabilize a world already going through rapid change” if something goes wrong.
But even in the case of the world’s leaders deciding upon a solution together, messing with the Earth’s climate is a risky business.
“In so doing, we may expose the world to other serious risks, known and unknown,” the authors say.
When it comes to removing carbon dioxide from the atmosphere, such work “would need to be implemented at very large scales to have the desired effect,” according to the scientists. That takes up a lot of land, which could put a squeeze on the agricultural industry, thus affecting food prices and availability. Such a method could also affect biodiversity.
Solar radiation management, the process through which scientists would change the amount of radiation reflecting back into space as opposed to reaching Earth, is no less perilous. The scientists foresee effects on the cycle through which water evaporates from the surface and returns as precipitation, changing rain patterns and doing nothing to slow down the acidification of the ocean.
earth-sun-iss


The sun shines down on Earth, as seen from the International Space Station. Photo: NASA/JSC
“The world’s most vulnerable people would likely be most affected,” they wrote.
Even if methods to decrease warming were successful, the writers also point out, Earth’s population would still need to work to reduce greenhouse gas emissions — the geoengineering simply would be buying us time to figure things out.
Some of those methods of buying time include changing the planet’s cloud coverage. 

In one perspective in Science, researchers investigate the pros, cons and nuances of thinning cirrus clouds to allow more heat to escape Earth. 

Those clouds specifically are not responsible for reflecting much of the sun’s radiation back into space, and serve more to trap heat coming off the surface below. 

Thinning out those clouds, therefore, could have a cooling effect. 

But it may negatively impact tropical climates.
“For the time being, cirrus cloud thinning should be viewed as a thought experiment that is helping to understand cirrus cloud–formation mechanisms,” the article says.
Read: Did Ocean Volcanoes Keep Carbon Dioxide High In Last Ice Age?
Another journal piece focuses on the details and implications of mimicking intense volcanic eruptions as a method to cool off Earth. Injecting aerosol particles of sulfur into the atmosphere would increase a protective layer that prevents heat from the sun from reaching the surface, instead reflecting it back into space.
“The effect is analogous to the observed lowering of temperatures after large volcanic eruptions,” the article says. 

And the process “could be seen as a last-resort option to reduce the severity of climate change effects such as heat waves, floods, droughts, and sea level rise.”
At the same time, however, it would reduce evaporation from the Earth’s surface, which would also reduce the amount of rainfall and could affect water availability.
No matter what option the world chooses — or doesn’t choose — the writers all call on leaders to start the discussion.
“The world is heading to an increasingly risky future and is unprepared to address the institutional and governance challenges posed by these technologies,” the scientists from the Carnegie Climate Geoengineering Governance Initiative say. “Geoengineering has planet-wide consequences and must therefore be discussed by national governments within intergovernmental institutions, including the United Nations.”

Press link for more: Yahoo.com

The Crazy Climate Technofix #auspol 

by Mark White
Illustrations by Bren Luke 
Earth’s climate has been edging towards a scene usually reserved for a post-apocalyptic movie.

 Some posit geoengineering as a radical fix to climate change.

 Others say the risks are too high and its proponents mad. 

Welcome to the debate where science fiction meets climate science.

If you visit a block of land near the West Australian dairy town of Harvey in a few years’ time, you will see a few pipes sticking out of the ground, a solar panel and an aerial for communications devices. 

There may be a hut and some room for parking.
These will be the only visible signs of the South West Hub project, designed to test the feasibility of pumping megatonnes of carbon dioxide into the vast Wonnerup sandstone layer, a kilometre-and-a-half deep beneath the Jarrah-Marri trees on the surface.
The gas will be liquefied in a nearby compressor building – an anonymous farm shed – and transported to the injection site via underground pipes.
Wonnerup is an example of carbon capture and storage, one of a suite of technologies known as geoengineering, or climate engineering.
Geoengineering is a mixed bag, but the idea involves large-scale interventions at the level of the whole planet, with the goal of fixing the climate.

 It’s tricky, dangerous, and largely considered “fringe science”.
The proposals come in two main flavours. 

One is carbon dioxide removal, which strips the gas from the atmosphere and slowly restores atmospheric balance.

 A mix of techniques would be needed: hundreds of factories like Wonnerup, billions of new trees and plants, plus contentious technologies such as artificially encouraging the growth of plankton.
The second is solar radiation management, intended to cool the Earth by stopping the sun’s heat from reaching the planet’s surface. 

That can be achieved by pumping minute particles into the atmosphere, but carries the risk of killing billions of people.
Right now, we don’t have the tools or the knowledge to deploy these fixes. 

But some prominent climate scientists argue that as carbon emissions continue to rise, geoengineering will have to be employed to avoid catastrophic climate change.
 

Last December’s meeting of world leaders in Paris produced a voluntary agreement to try to limit the global temperature increase to 1.5C over pre-industrial levels, and to not exceed 2C – the widely agreed level of devastating heat increase.

 But agreement and actual efforts didn’t seem to go hand in hand.

“The roar of devastating global storms has now drowned the false cheer from Paris,” a team of 11 climate scientists wrote in a January letter to The Independent, “and brutally brought into focus the extent of our failure to address climate change. 

The unfortunate truth is that things are going to get much worse.”
University of Cambridge Professor Peter Wadhams says: “Other things being equal, I’m not a great fan of geoengineering, but I think it absolutely necessary given the situation we’re in. 

It’s a sticking plaster solution. 

But you need it, because looking at the world, nobody’s instantly changing their pattern of life.”
Since then, temperatures have been soaring month after month, we’ve learned that the Great Barrier Reef is in extremely poor health and bleaching rapidly, while new quests continue to unearth more fossil fuels.
As we’re failing to keep the planet pleasant and habitable for future generations, could we instead fix the climate with technology? 
With geoengineering?
Debate about geoengineering in Australia is “almost being avoided”, according to Professor David Karoly, a noted atmospheric scientist at the University of Melbourne.

 He is a member of the Climate Change Authority, which advises the federal government, and was involved in preparing the 2007 IPCC report on global warming.
“There’s very little discussion on it in terms of government circles, there’s very little research on it, there’s very little discussion of it in what might be called mainstream science,” Professor Karoly says.

Policymakers are including geoengineering in their plans, but many technologies are still unproven and potentially dangerous.
“You’ll generally find among climate scientists that almost all are opposed to geoengineering,” says Professor Jim Falk, of the University of Melbourne’s Sustainable Society Institute. 

“They’re already pretty concerned about what we’ve done to the climate and don’t want to start stuffing around doing other things we only half-understand on a grand scale.”
When the US National Academy of Science launched a report last year analysing geoengineering options, committee head Marcia McNutt, a geophysicist, was asked if any should be deployed. 

She replied “Gosh, I hope not”.
The report considered carbon dioxide removal and solar radiation management so risky it used the term “climate intervention” instead of geoengineering, arguing the term “engineering” implied a level of control that doesn’t exist.
But the IPCC has considered scenarios where such engineering would be necessary: its 2014 assessment report mentions bio-energy carbon capture and storage (known as BECCS), where plant fuel is burned and the resulting carbon dioxide buried.
And the Paris Agreement noted there would be need for a “balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases” in 2050-2100.
“A few years ago, these exotic Dr Strangelove options were discussed only as last-ditch contingencies,” wrote Kevin Anderson, deputy director of the UK’s Tyndall Centre for Climate Change, of the Paris talks in Nature magazine.
“Now they are Plan A.”
 

The term “geoengineering” raises the spectre of a James Bond villain cackling in his lair and planning to make volcanoes erupt at the push of a button. And that’s quite fitting, given that one approach to solar radiation management consists of mimicking the fallout from such giant explosions.
Treating the problem like an outlandish movie script may be the only way of comprehending the scale of the challenge. To reduce atmospheric CO2 levels by 1ppm – approaching the volume needed to stabilise global temperature – requires the withdrawal of 18 gigatonnes of gas, the equivalent of 18,000 South West Hub plants running for a year.
Tim Flannery, the former Australian of the Year who helped raise the profile of climate change, is vocal in supporting some geoengineering approaches. He prefers the less-toxic term “Third Way technologies”, based on the Earth’s natural processes.
Flannery says those which work at the gigatonne scale – the only ones which will dent the problem – may take decades to be developed.
“The only way you can get to a Paris-like outcome is by slamming hard on emissions,” he says, “reducing them as fast as humanly possible as well as investing now in these technologies that’ll give you these gigatonne gains in 20 or 30 years time.”
”The question for most of these technologies is – we don’t know if they work. But we need them to work.”
Flannery says solar-radiation management approaches should be treated with great caution, as they mask the problem: they will reduce the temperature, but not affect rising CO2 levels, leaving the oceans ever more acidic. That could see a catastrophic loss of reefs and oceanic life, devastating the aquatic food chain.
Ironically, one of the reasons the atmosphere isn’t already at a 2C warming mark, says Professor Karoly, is due to the aerosols already in the atmosphere – an unintentional form of solar radiation management.
He says the current best estimate of stabilising the temperature at that level, with a 50 per cent likelihood, is for a carbon equivalent reading of 420-480ppm. The current figure is 481ppm, and rising at 3ppm per year.
Solar radiation management – deliberate and large scale – might buy time in an emergency, says Flannery. “There’s a broad highway to hell that’s easy to go down and it’s really cheap, relatively. It’s instantly effective, nations can do it unilaterally and it gives you a lower temperature.
“But there’s a narrow, crooked, winding path to heaven which is the carbon reduction stuff. It’s at a very early stage, but that actually does solve the problem.”

Once we capture carbon, it can actually be used productively. American researchers have produced carbon nanofibres from atmospheric carbon dioxide – initially only 10g per hour, but they are convinced it could scale.
There could be vast baths of molten chemicals across large swathes of the Sahara Desert, powered by solar radiation, forming layers of a valuable building material on submerged electrodes.
A research project at a California university has gone further, manufacturing a building material dubbed CO2NCRETE from captured carbon dioxide. A pilot plant at Australia’s University of Newcastle is investigating whether a similar process, combining excess CO2 from an Orica plant with minerals to form building materials, has commercial potential.
Flannery is interested in desktop studies on carbon-sucking seaweed and algae, as well as research reporting that carbon dioxide can be made to fall as snow over the Antarctic.

Picture this: the temperature plummeting well below freezing until a blizzard of dry ice cascades onto the barren plains below, each cuboctahedral flake representing a miniscule improvement in carbon levels, to be stored safely – somehow – from warming into a gas and re-entering the air.
“We’re at very, very early days,” Flannery warns. “Various approaches have different favourable aspects to them, but I don’t think any of them are anything like a silver bullet.”
Flannery’s championing of unorthodox technologies – even as avenues for research – isn’t shared by many high-profile climate change campaigners. David Karoly calls Flannery’s interest “surprising”. He deems ideas such as dry ice snowfall in Antarctica as “rather technofix solutions”.
“How do you get sufficient CO2 out of the atmosphere and store it?” asks Professor Karoly. “It’s probably the most inhospitable environment in the world and he’s talking about – if you work out what this equates to, it’s a mountain higher than Everest, the size of a soccer field every year.”
The Paris target of a 1.5C rise is “virtually impossible” without new technologies, he says, which “have not been proved either commercially viable or without major harm”.
“My concern is, the cure might be substantially worse than the disease.”
Clive Hamilton, professor of public ethics at Charles Sturt University, who wrote about geoengineering in his 2013 book Earthmasters, is more blunt.
“The schemes [Flannery] proposes are real pie-in-the-sky stuff, way out there,” he says. “He seems to have been sucked in by a kind of strange techno-promise that’ll get us out of this.”

Australian geoengineering research lags far behind the world leaders in the US, UK and Germany. It’s limited to a handful of scientists in Sydney and Hobart, and our major achievement is helping to halt commercial oceanic geoengineering.
The federal government, via its Direct Action policy, focuses on carbon sequestration without the crazy technofix label. Instead it backs land-use practices such as planting new forests, and prioritises soil enhancement, mangrove protection and rainforest recovery.
“There was an enormous groundswell of support for these activities in Paris,” a spokesperson for the Department of the Environment says. “Other actions [in the geoengineering field] would have an enormously high safety bar to cross and are a long way from proof.”
Meanwhile, CSIRO looks set to embark on an expansion of its geoengineering research program, both at land and sea. In a recent memo to staff announcing 350 job cuts at the organisation, CSIRO head Larry Marshall nominated “climate interventions (geo-engineering)” as one area in which it would seek a “step change” in knowledge.
“CSIRO is currently working through the detail of our future climate adaptation and mitigation research, and will include research relevant aspects of onshore and offshore geo-engineering. The scale and scope of this research is still to be determined,” a CSIRO spokesperson told SBS.

 
Jim Falk categorises geoengineering proposals along various lines, including how big a project needs to be for credible deployment, how big an impact it would have, whether it is reversible, what governance is required, how much it would cost, and the risks involved.
“Then you can say different proposals have different footprints,” Falk says, “and depending on the footprint you can suggest what sort of barriers you would want for their regulations before you would allow an experiment to take place.”
Unlike attempts to reduce global carbon emissions – where everyone must do their part for action to be effective – what scares scientists about solar radiation management is the relative ease of one person launching a planet-wide experiment.
Spraying sulphate particles into the atmosphere from aircraft or balloons is known to reduce temperatures. It mimics what happens when volcanic ash blankets the atmosphere.
There would be spectacular sunsets as solar rays interact with the particles, with brilliant red eddies splashing the evening sky, similar to those in Edvard Munch’s famous painting The Scream.
And it has been costed at just $US10 billion a year.
One test in August 2008 was conducted on land 500km southeast of Moscow by Yuri Izrael, Russian President Vladimir Putin’s science advisor. He and his team rigged aerosol sprays on a helicopter and car chassis, measuring how solar radiation was retarded at heights up to 200 metres.
“China might decide to pump a load of sulphur into the atmosphere and not tell anyone about it,” says Rosemary Rayfuse, a Law professor at UNSW and a global authority on regulating geoengineering. “Or Australia could do it. Anybody could. That’s the other problem – it’s so easy to do.”
Billionaires Bill Gates and Richard Branson could step forward, says Anita Talberg, a PhD student in the governance of climate engineering at the University of Melbourne. Both support geoengineering and have funded research.
“They could just decide suddenly, ‘I could do enough benefit for the poor and vulnerable in the world, I could just do it and save them from the climate crisis.’”
Such a move could be catastrophic, most immediately due to the risk of drought in the tropics, devastating the food security of billions of people. Those colourful sunsets are projected to see lower rainfall.
The sky will bleach white during the day, while ozone depletes in the tropics – where most of the world’s population live. As the temperature falls, levels of UV radiation will rise, leading to an upsurge in skin cancers.

Professor Andy Pitman, of the Climate Change Research Centre in Sydney, is a member of the World Climate Research Program.
The only role he sees for sulphate injection is alongside steep cuts in carbon emissions. “If people are talking about it as a substitute for that, the technical term you’d use is ‘cloud cuckoo land’.”
But he hopes it’s never necessary.
“God, I hope not. We have a well-studied problem called global warming – we’re not sure of every detail – that would breach every ethics experiment on the planet if you proposed it as an experiment.
“All those problems relate to solar radiation management and I’d suggest any country that tried it at any significant level would find itself in every court in the world.”
There are smaller-scale approaches, he says, without the “ethical problems”. One is painting roofs white to reflect sun, a backyard approach anyone can try, and which would help cool interiors during hot summer days.
Another is genetically modified crops with a higher reflectivity, with variations as simple as leaves that are hairier or have a waxier coating.
Harvard University’s Professor David Keith is leading more research into solar radiation management, arguing in a 2015 paper that the technique could be used in a “temporary, moderate and responsive scenario”.
“Even if we make deep emissions cuts, it might be that the benefits of solar geoengineering outweigh the risks,” he tells SBS. “Or maybe not. To know, we have to decide to learn more.”
 

The belief in a technical solution – that because we have to find something, we will – has psychological roots in an effect known as ‘optimism bias’, says Melbourne psychologist Dr Susie Burke, who has expertise on issues relating to the environment, climate change and natural disasters.
“It’s intrinsic to humans to be optimistically biased,” she says, “and it’s great because it gets us out of bed in the morning and gives us a healthy motivation. But with respect to climate change, it means we end up minimising our personal risk and even risks that pertain to us – and believing the worst problems will happen to other people, somewhere else or into the future.”
She adds, “With the general population who are struggling to make significant changes to their lifestyle, deep down there is a belief that someone, somewhere will come up with something to solve the problem.”
Even talking about geoengineering carries the risk of “moral hazard”, that a solution to rocketing carbon emissions means they can continue unabated. That scenario troubles many.
“There’s a moral hazard in not discussing these things as well,” says Tim Flannery, “because we know we’re going to need them.”
The worst-case scenario – international agreements fail to stop emissions from rising – would force the use of extreme measures. Clive Hamilton thinks sulphate injection is the most likely use of geoengineering, though not yet.
“If we have a series of years where there are catastrophic droughts, heatwaves and hurricanes which cause massive impacts in several countries – also tipping points, so permafrost is now irreversibly melting – what kind of political and geostrategic environment are we going to be facing?” he asks.
“I think in that kind of scenario – which is not just possible but fairly likely – certain scientists promising they can rapidly reduce the earth’s temperature within a year or two are going to start looking increasingly attractive to some nations.”
Andy Pitman says that could lead to war: “You can imagine a situation – and it’s not too far-fetched – where country X starts a major campaign around sulphur injections into the atmosphere, country Y’s rainfall dramatically declines and is going into serious long-term famine, and that instigated a military response.”
And if carbon emissions continued to rise, the sulphate injection would have to be continuous. Otherwise, the particles would drop out of the atmosphere, leading to a sudden, highly disruptive jump in temperature.
If a war, say, or a pandemic was responsible for the break in sulphate injection, the compounding effects could be existential. 

Talking of human extinction in such a scenario is not too far-fetched.

 
The possibilities are less apocalyptic for some form of carbon capture and storage. 

Clive Hamilton identifies land being used by the likes of BECCS – bio-energy carbon capture and storage – to capture carbon as one of the main changes in geoengineering in the last few years.
Plants and trees would be grown for fuel, and the resulting carbon emissions from power generation would be stored away. There’s an example of this in Illinois at an ethanol production plant.
But there are questions over BECCS, not least that “no such economic process [is] available at this point and there may never be”, says Jim Falk.
The sheer amount of land needed is staggering, too. 

In a February 2016 paper in Nature,environmental scientist Philip Williamson estimated that one-third of the world’s arable land (430-580 million hectares of crops) would need planting for BECCS use to limit the temperature rise to 2C by 2100.

This would accelerate deforestation and, given “not unrealistic” assumptions, see carbon emissions actually increase.
Oliver Munnion, of the UK-based BioFuelwatch website, argues that BECCS is more dangerous than solar radiation management.

 “It’s the most outrageous,” he says. “It’s also the favoured approach amongst policy-makers, scientists and industry.
“The idea that we’d harm proven carbon sinks – forests and soils – to create an unproven and untested carbon sink underground is the antithesis of what climate policy should be geared towards.”
The problem facing geoengineering advocates is that most dangerous schemes are possible, but need to be used as a last resort, while the most promising schemes aren’t possible at scale. 

Even if they were, the numbers quickly turn ugly.
In the Nature article, Philip Williamson estimated that growing seaweed as a carbon pool would use nine per cent of the world’s oceans, with unknown environmental impacts.
Utilising the simple solar-radiation management tool of laying a reflective rock on the ground to reduce carbon levels by 12 per cent would need 1-5 kg/sqm of rock to be applied to 15-45 per cent of the earth’s surface, at a total cost of US$60-600 trillion.

That means an area of land at least the size of the old Soviet Union would have to be set aside and the global economy bankrupted.
The further you look, the more improbable geoengineering concepts become. A presentation to the 2016 American Meteorological Conference on Atmospheric Science called for lasers in the sky to microwave and neutralise methane clouds (another greenhouse gas).
UNSW Law professor Rosemary Rayfuse recalls one UK project looking at increasing the reflectivity of the oceans by making white foam, which had to persist for at least three months: “They were proposing to cover the oceans in meringue, which I thought was rather funny!”
David Karoly calls the idea of hanging mirrors in space to reflect sunlight “just stupid”, calculating the need for one million square kilometres of alfoil. Flannery agrees: “Anything that masks the problem, and lets people think they’ve solved it, is a danger.”
Cutting carbon emissions drastically, and now, would start to solve the problem. But that isn’t happening. Campaigners such as Tim Flannery are crossing their fingers that carbon-scrubbing technology we need to take us on “the narrow winding path to heaven” is developed in time.
If neither happens, we’ll be heading down the “broad highway to hell” of having to rely on solar radiation management, where the devil we don’t know is better than a climate gone rogue.
The effects of pumping simulated volcanic fallout into the atmosphere could dwarf the biggest eruptions in history. Start preparing for vivid red sunsets – and an uncertain future

Press link for more: SBS.COM.AU

Farmers on the front lines of #ClimateChange #auspol 

Though we first met Richard Wiles when he was executive director at the Environmental Working Group (which he co-founded), he’s also a major player in the ongoing effort to better understand the future’s hotter, less stable climate (also see our deep-dive with Mark Hertsgaard on the subject). 

Wiles’s current organization, Climate Central, is on the front lines of the climate battlefield, authoring countless papers, special reports, and graphics, and informing critical news stories on climate issues—and how best to handle them. 

Richard’s refreshingly frank assessments on climate change stand out in this space, where the focus on opaque numbers can make the issue feel less urgent than it actually is. 

Below, he paints the picture of what climate change will look like in real terms and presents a new idea about how we might slow it down (hint: actual trees are involved).
A Q&A with Richard Wiles
Q
If we continue on the same path or anything resembling the current emissions path, what will the United States look like in 50 years?

A
The first thing to know is that parts of South Florida will be gone.

 Even with reduced emissions, or a dramatic lowering of emissions, the most prized real estate in South Florida, where thousands of people live, will be routinely underwater, period. You can move up the coastline and look at different low-lying, coastal cities: Charleston, South Carolina; Norfolk, Virginia; and coastal cities in Maryland and North Carolina, and they’re not just going to face major issues of sea level rise, but also major issues with storm surge during hurricanes.

 Even if we limit change to 2 degrees Celsius, which is the goal agreed to at the Paris climate summit in 2015, every major coastal city will see a huge impact (and it’s worth noting that without significant additional commitments by major polluting nations this goal is not particularly likely to be achieved).
“Even if we limit change to 2 degrees Celsius, which is the goal agreed to at the Paris climate summit in 2015, every major coastal city will see a huge impact.”

We’ll also have less snowpack in the West, where it’s critical for water supplies. And earlier snowmelt means drier forests, which then tend to be set up for big wildfires. When it rains, a greater percentage of rainfall will come in these huge downpours. So we’ll get more 2in, 3in, 4in, 5in, 12in rains like what we saw in Houston, South Carolina, Louisiana, and Missouri this year. These out-of-control episodes of 14 inches of rain in 24 hours. So you’re going to see a lot more localized flooding and all the damage that comes with that. Everything will need to be redesigned, from sewage treatment plants to roadways, to people’s homes, in order to handle these gigantic downpours. Hurricanes will be stronger and more intense. Whether there will be more of them or whether they make landfall and hit harder, nobody knows. But it is clear that a greater percentage of the hurricanes that do happen will be big old monster storms.
The next thing you’re going to see for sure is heat. This is the one that nobody really talks about much because it’s kind of boring—it’s just heat. But, in the United States, particularly along the Gulf Coast and in the Southwest, we’re going to see an increase in the number of so-called danger days, where it’s really hazardous to be outside for a long period of time. In Florida, for example, danger days are going to go from 25 days a year to about 140 days a year in 2050. And it’s the same story with Texas, Louisiana, all along the Gulf Coast, and in the Southwest as well. There’s not as much humidity in the Southwest, but the heat is just going to be completely over the top there. We’ll see radical increases in the number of days above 100 or 110 in places like Phoenix and Tuscon. Even places in Southern California that aren’t on the coast will be seriously affected. And in addition to the quality of life issue, that level of heat is truly going to make outdoor work—construction, agriculture, infrastructure like highway-building— in many places impossible for portions of the year.


Q
Can you explain more about the heat issue? What will that physically be like to experience?
A
One of the things that people really need to think about is (and it might be the most compelling, single way to think about how climate change is like a death spiral) is that the hotter it gets, the greater the demand for air conditioning. And it is going to get a lot hotter, especially the extremes: Yes, the average temperature is going to go up, but more importantly you’re going to get many more extremely hot days. So, if you go to a place like India, there are probably 300 million people (about 20 percent of the population) that want and will get (and deserve) air conditioning in the next ten or twenty years, and that’s like powering AC for the entire United States today. How are they going to power that up? They’re mostly going to power that up with coal. So the more air conditioning demand you have, the more demand for electricity you have, and the majority of that electricity is going to come from fossil fuels even with unprecedented ramp-ups in renewables. For the next couple of decades at least. And that is going to accelerate climate change, making it even hotter, upping the demand for more air conditioning. So you see the problem.
Q
What are the consequences of global warming when it comes to disease? Could we see an increased range of disease-carrying mosquitoes, or the release of something that’s been trapped in the ice?
A
No one really knows. What we do know is that warming temperatures are increasing the range and the number of days that are prime breeding and survival days for many disease vectors, like mosquitos that transmit Zika and West Nile, or the ticks that carry Lyme disease. In some places we are headed toward a year-round mosquito season—not a good thing. But what’s worse is that we really have no idea what we are doing. We are warming the planet at least 10 times faster than it has ever warmed in the past 800,0000 years. Could this rapid warming create ideal conditions for a sudden, massive disease outbreak? Theoretically, yes, it could. Is it likely? No, it is probably not very likely. Can we be sure about that? No, we can’t, which to me is a very scary thing.
Q
What if we stopped polluting today? What change are we already locked into?
A
Even if we stop polluting today, like, if the whole world turned off all fossil fuel emissions today, you’re still looking at several feet of sea level rise. What’s probably more relevant, since we can’t turn off all fossil fuel emissions today, is that even if we took aggressive action to curb climate change, we will be putting multiple gigatons of carbon into the atmosphere, for many, many, decades to come.

Q
So what, realistically, can we do in the face of all this doom and gloom?
A
The real bottom line is that there’s only one way to deal with this, and that is through massive policy intervention. It could be an elegant, simple thing, like taxing carbon a lot, and we’re done. Or it could be extremely complicated, like the Clean Power Plan. But it needs to be powerful and significant. Electric cars and efficient light bulbs are great, but they can’t make change at scale unless something forces the current polluting cars and power sources off the market. There aren’t enough Teslas in the world right now to really make a difference, and what people forget about Teslas is that they’re only as good as the power source (if the electricity you’re using to power them comes from fossil fuels, for example).
If everyone committed to the agreement made in Paris, global emissions would be 6 gigatons a year less in 2030 than they are projected to be if we didn’t have any commitment. So from about 60 gigs a year to 54 a year in 2030. This is an increase from where we are now, and while everyone is all proud of themselves for reducing emissions by 2030, and, you know, making sure that they don’t go up, which is where we’re headed, being at 54 gigatons in 2030 won’t get it done—we need to be at, like, 30. So there’s just a gigantic gap between what we’ve committed to and what needs to happen to keep the world anywhere close to two degrees, and we already know (see question 1) that two degrees is still a situation that sucks.
Q
Are there any reasonable ways to take carbon out of the atmosphere?

A
There’s one thing out there that could help a lot and it’s called carbon negative, or negative emissions. To be clear, we’re not talking about geoengineering where you put shiny dust into the stratosphere that deflects sunlight away, or crazy satellites with mirrors, or sulfur dioxide in the atmosphere to absorb ultraviolet rays. None of that science fiction BS. Carbon negative is basically taking carbon out of the atmosphere and putting it somewhere safe and permanent. You can do in a number of different ways, like accelerated weathering of rock, or giant carbon-sucking vacuum cleaners (which haven’t been proven at scale), or you can use photosynthesis: Trees, crops, and perennial grasses, our best option by far.
Q
How would it work?
A
Let’s pretend the world got its act together and committed to drastic action to stop global warming. You need three things, done simultaneously and aggressively. One, radical reductions in fossil-fuel emissions. Two, dramatic acceleration in the deployment of renewables. And three, large-scale implementation of negative emissions strategies.
With negative emissions, we could tip the scale toward real reductions in net carbon emissions, relatively quickly at legitimate scale, by pulling multiple gigatons of carbon out of the atmosphere and putting them in the ground or in plants and trees. Think of it as a massive global effort to get carbon out of the atmosphere—through, basically, more vegetation and improved farming systems. It’s as simple as that. We could restore hundreds of millions of degraded hectares of agricultural land, or just degraded land in general, all around the world. There’s no fancy technology, no science fiction.
“If we’re honest with ourselves, it’s obvious that windmills and solar panels will not get us there fast enough. Not even close.”
Of course, there are big questions, like where it should be done, what plants should be used, and which forests and plants are the most efficient carbon absorbers; and we would need to make sure we don’t compete with water, energy, and food supplies. But despite those questions, which are serious, we know that there’s plenty of land that could be used in this way, and there’s a path forward here that’s not super difficult. It’s not really on anybody’s radar screen, because it’s not very sexy or glamorous. It’s just planting and restoring lands in a way that efficiently takes up carbon—but, it is sitting there in plain sight as a powerful option, and it should be a much bigger part of the conversation: When you add negative emissions to the equation you can legitimately have some kind of realistic hope that we might not just go flying off a cliff. Because if we’re honest with ourselves, it’s obvious that windmills and solar panels will not get us there fast enough. Not even close.

Q
How is this different than carbon sequestration, which we’ve heard about in the past?
A
Carbon capture and sequestration (CCS) typically refers to capturing carbon from fossil fuel emissions and physically pumping the carbon back underground, in gas form. CCS may have a role in some carbon negative systems, but when applied to fossil fuel emissions CCS is not carbon negative. Not to mention that it costs way too much, and to date doesn’t actually work at scale. What negative emissions strategies do is literally take carbon out of the atmosphere using plants and trees—efficient natural systems that do this much more elegantly than humans can. It’s not about technology, or putting fancy gizmos on power plants.
Q
How would this differ from the old-fashioned carbon offsets we’ve historically been able to purchase online?
A
The policy setup is totally different. Offsets have historically been a largely unverified license to pollute, as long as someone, somewhere, theoretically offsets that pollution by not doing something bad, say cutting down a forest, that they may not have been going to do anyway. And too often, the pollution we are allowing with offsets falls on poor communities who didn’t have any say in the bargain. Carbon negative would not be anybody’s permission to pollute. It has to be fundamentally disconnected from ongoing, aggressive action to reduce fossil fuel emissions.
Q
Is anyone doing carbon negative projects successfully? Even at a small scale right now?
A
There are, and part of the reason for that is there are a million versions of what this could look like. Carbon negative could involve rotational grazing (which can store a lot of carbon above and below ground in pastures), or no-till farming, or it could be restoring a wetland or a forest or grassland. Those would all probably qualify, though very few of them are being understood that way or measured that way—in general, we make very few measurements of carbon being stored in soil, though it’s just a pretty simple approach. You do a baseline measurement of your carbon, you understand what plants would maximize the potential carbon storage per acre, and you measure the inputs and outputs.
The important thing about this whole idea is scale. Carbon negative is only worth talking about if you’re talking about hundreds of millions of acres of land. And the primary mission for these lands would have to be taking carbon out of the air—it can’t get tied up in other conservation purposes. No one has articulated that vision yet, and we at Climate Central want to do that. We’re going to do that.
Q
What are the next steps to execute carbon negative programs?
A
First, we need to start talking about it—define it, show people the math and get it floating around in people’s consciousness. Then we need to get the science right. Climate Central is beginning to ask these questions: Where would it work based on water and climate? Which soils would it work on? What are the water and food trade-offs when crops are grown for carbon storage? Which crops, which plants, and which places could get the most carbon in the ground most efficiently? We are just beginning to make the case, lay out the path, identify the key questions, and articulate the vision. But it needs to be done, and it needs to be done quickly.
Currently, if you’re honest at all, our climate situation is so damn bleak, with the new president aiming to roll back the progress that has been made, and climate deniers in charge of the congress. Even so, carbon negative at scale, combined with aggressive emission reductions and deployment of renewables, could give us actual, legitimate hope. This isn’t crazy talk. This is very doable. If we do this aggressively and commit to it, then maybe we have a shot. If not, we have no shot. No shot at 2C, maybe no shot at 3C, maybe no shot at 4C for that matter.
Carbon negative could also provide a path forward that would work across the political spectrum. It could be a powerful program for farmers and ranchers with currently unproductive land; they could become part of a National Carbon Reserve. 

You could create contracts that would allow carbon to be locked up on that land for 100 years, priced per acre. Would farmers do it? 

Yes, they would. I worked on agricultural policy for twenty years. 

I can tell you that if the price is right, farmers will sign up. Is there money in the federal budget for that? Yes. If we had a carbon tax of even the tiniest amount, would it pay for that?

 Yes. So, in the United States, there are 400 million acres of land we could start with. That’s a big chunk of land. It’s really not that tricky. It’s just about whether or not we want to do it.

Press link for more: goop.com

Radical Realism About Climate Change #auspol

Lili Fuhr heads the Ecology and Sustainable Development Department at the Heinrich Böll Foundation.

BERLIN – Mainstream politics, by definition, is ill equipped to imagine fundamental change. But last December in Paris, 196 governments agreed on the need to limit global warming to 1.5°C above pre-industrial levels – an objective that holds the promise of delivering precisely such a transformation. Achieving it will require overcoming serious political challenges, reflected in the fact that some are advocating solutions that will end up doing more harm than good.

One strategy that has gained a lot of momentum focuses on the need to develop large-scale technological interventions to control the global thermostat. Proponents of geo-engineering technologies argue that conventional adaptation and mitigation measures are simply not reducing emissions fast enough to prevent dangerous warming. Technologies such as “carbon capture and storage” (CCS), they argue, are necessary to limit damage and human suffering.

The Intergovernmental Panel on Climate Change seems to agree. In its fifth assessment report, it builds its scenarios for meeting the Paris climate goals around the concept of “negative emissions” – that is, the ability to suck excess carbon dioxide out of the atmosphere.

But this approach ignores serious problems with the development and deployment of geo-engineering technologies. Consider CCS, which is the process of capturing waste CO2 from large sources like fossil-fuel power plants and depositing it in, say, an underground geological formation, thereby preventing it from entering the atmosphere.

It sounds good. But what makes it economical is that it enables enhanced oil recovery. In other words, the only way to make CCS cost-effective is to use it to exacerbate the problem it is supposed to address.

The supposed savior technology – bioenergy with carbon capture and storage (BECCS) – is not much better. BECCS begins by producing large amounts of biomass from, say, fast-growing trees which naturally capture CO2; those plants are then converted into fuel via burning or refining, with the resulting carbon emissions being captured and sequestered.

But bioenergy is not carbon neutral, and the surge in European demand for biomass has led to rising food commodity prices and land grabs in developing countries. These realities helped persuade the scientists Kevin Anderson and Glen Peters recently to call carbon removal an “unjust and high-stakes gamble.”

What about other geo-engineering proposals? Solar Radiation Management (SRM) aims to control the amount of sunlight that reaches the Earth, essentially mimicking the effect of a volcano eruption. This may be achieved by pumping sulphates into the stratosphere or through “marine cloud brightening,” which would cause clouds to reflect more sunlight back into space.

But blasting sulphates into the stratosphere does not reduce CO2 concentrations; it merely delays the impact for as long as the spraying continues. Moreover, sulphate injections in the northern hemisphere could cause serious drought in the Africa’s Sahel region, owing to dramatic reductions in precipitation, while some African countries would experience more precipitation. The effect on the Asian monsoon system could be even more pronounced. In short, SRM could severely damage the livelihoods of millions of people.

If geo-engineering can’t save us, what can? In fact, there are a number of steps that can be taken right now. They would be messier and more politically challenging than geo-engineering. But they would work.

The first step would be a moratorium on new coal mines. If all currently planned coal-fired power plants are built and operated over their normal service life of 40 years, they alone would emit 240 billion tons of CO2 – more than the remaining carbon budget. If that investment were re-allocated to decentralized renewable-energy production, the benefits would be enormous.

Moreover, with only 10% of the global population responsible for almost 50% of global CO2 emissions, there is a strong case to be made for implementing strategies that target the biggest emitters. For example, it makes little sense that airlines – which actually serve just 7% of the global population – are exempt from paying fuel taxes, especially at a time when ticket prices are at an historic low.

Changes to land use are also needed. The 2009 International Assessment of Agricultural Knowledge, Science and Technology for Development charts the way to a transformed agricultural system – with benefits that extend far beyond climate policy. We must apply this knowledge around the world.

In Europe, the waste sector could make a significant contribution to a low-carbon economy. Recent research, commissioned by Zero Waste Europe, found that optimal implementation of the European Commission’s “circular economy package” waste targets could save the European Union 190 million tons of CO2 per year. That is the equivalent of the annual emissions of the Netherlands!

Available measures in the transport sector include strengthening public transportation, encouraging the use of railways for freight traffic, building bike paths, and subsidizing delivery bicycles. In Germany, intelligent action on transport could reduce the sector’s emissions by up to 95% by 2050.

Another powerful measure would be to protect and restore natural ecosystems, which could result in the storage of 220-330 gigatons of CO2 worldwide .

None of these solutions is a silver bullet; but, together, they could change the world for the better. Geo-engineering solutions are not the only alternatives. They are a response to the inability of mainstream economics and politics to address the climate challenge. Instead of trying to devise ways to maintain business as usual – an impossible and destructive goal – we must prove our ability to imagine and achieve radical change.

If we fail, we should not be surprised if, just a few years from now, the planetary thermostat is under the control of a handful of states or military and scientific interests. 

As world leaders convene for the 22nd United Nations Framework Convention on Climate Change to bring the Paris agreement into force, they should repudiate geo-engineering quick fixes – and demonstrate a commitment to real solutions.

Press link for more: Project-Syndicate

The trouble with negative emissions. #auspol #ClimateChange

In December 2015, member states of the United Nations Framework Convention on Climate Change (UNFCCC) adopted the Paris Agreement, which aims to hold the increase in the global average temperature to below 2°C and to pursue efforts to limit the temperature increase to 1.5°C. 

The Paris Agreement requires that anthropogenic greenhouse gas emission sources and sinks are balanced by the second half of this century. 

Because some nonzero sources are unavoidable, this leads to the abstract concept of “negative emissions,” the removal of carbon dioxide (CO2) from the atmosphere through technical means. 

The Integrated Assessment Models (IAMs) informing policy-makers assume the large-scale use of negative-emission technologies.

 If we rely on these and they are not deployed or are unsuccessful at removing CO2 from the atmosphere at the levels assumed, society will be locked into a high-temperature pathway.

It is not well understood by policy-makers, or indeed many academics, that IAMs assume such a massive deployment of negative-emission technologies. 

Yet when it comes to the more stringent Paris obligations, studies suggest that it is impossible to reach 1.5°C with a 50% chance without significant negative emissions (3). 

Even for 2°C, very few scenarios have explored mitigation without negative emissions (2). 

Negative emissions are also prevalent in scenarios for higher stabilization targets (7). 

Given such a pervasive and pivotal role of negative emissions in mitigation scenarios, their almost complete absence from climate policy discussions is disturbing and needs to be addressed urgently.

Negative-Emission Technologies
Negative-emission technologies exist at various levels of development (8–11). Afforestation and reforestation, although not strictly technologies, are already claimed by countries as mitigation measures. 

Bioenergy, combined with carbon capture and storage (BECCS), is the most prolific negative-emission technology included in IAMs and is used widely in emission scenarios. 

It has the distinct feature of providing energy while also, in principle (12), removing CO2 from the atmosphere. Assuming that carbon is valued, BECCS can thus provide an economic benefit that may offset, at least in part, the additional costs of using the technology (13). Generally, carbon is assumed to be fully absorbed during biomass growth, captured before or after combustion, and then stored underground indefinitely. Despite the prevalence of BECCS in emission scenarios at a level much higher than afforestation, only one large-scale demonstration plant exists today.
Other negative-emission technologies have not moved beyond theoretical studies or small-scale demonstrations. Alternative and adjusted agricultural practices, including biochar, may increase carbon uptake in soils (9). It may also be possible to use direct air capture to remove CO2 from the atmosphere via chemical reactions, with underground storage similar to CCS. Enhancing the natural weathering of minerals (rocks) may increase the amount of carbon stored in soils, land, or oceans. Introduction of biological or chemical catalysts may increase carbon uptake by the ocean. New technologies, designs, and refinements may emerge over time.
BECCS: A Political Panacea
The allure of BECCS and other negative-emission technologies stems from their promise of much-reduced political and economic challenges today, compensated by anticipated technological advances tomorrow. Yet there are huge opportunities for near-term, rapid, and deep reductions today at little to modest costs, such as improving energy efficiency, encouraging low-carbon behaviors, and continued deployment of renewable energy technologies. Why, then, is BECCS used so prolifically in emission scenarios?
The answer is simple. Integrated assessment models often assume perfect knowledge of future technologies and give less weight to future costs. In effect, they assume that the discounted cost of BECCS in future decades is less than the cost of deep mitigation today. In postponing the need for rapid and immediate mitigation, BECCS licenses the ongoing combustion of fossil fuels while ostensibly fulfilling the Paris commitments.
The idea behind BECCS is to combine bioenergy production with CCS, but both face major and perhaps insurmountable obstacles. Two decades of research and pilot plants have struggled to demonstrate the technical and economic viability of power generation with CCS, even when combusting relatively homogeneous fossil fuels (14). Substituting for heterogeneous biomass feedstock adds to the already considerable challenges.
Moreover, the scale of biomass assumed in IAMs—typically, one to two times the area of India—raises profound questions (10) about carbon neutrality, land availability, competition with food production, and competing demands for bioenergy from the transport, heating, and industrial sectors. 

The logistics of collating and transporting vast quantities of bioenergy—equivalent to up to half of the total global primary energy consumption—is seldom addressed. 

Some studies suggest that BECCS pathways are feasible, at least locally (15), but globally there are substantial limitations (10). BECCS thus remains a highly speculative technology.
Moral Hazard and Inequity
The appropriateness or otherwise of relying, in significant part, on negative-emission technologies to realize the Paris commitments is an issue of risk (7). 

However, the distribution of this risk is highly inequitable. If negativeemission technologies fail to deliver at the scale enshrined in many IAMs, their failure will be felt most by low-emitting communities that are geographically and financially vulnerable to a rapidly changing climate.
The promise of future and cost-optimal negative-emission technologies is more politically appealing than the prospect of developing policies to deliver rapid and deep mitigation now. If negative-emission technologies do indeed follow the idealized, rapid, and successful deployment assumed in the models, then any reduction in near-term mitigation caused by the appeal of negative emissions will likely lead to only a small and temporary overshoot of the Paris temperature goals (3). 

In stark contrast, if the many reservations increasingly voiced about negative-emission technologies (particularly BECCS) turn out to be valid, the weakening of near-term mitigation and the failure of future negative-emission technologies will be a prelude to rapid temperature rises reminiscent of the 4°C “business as usual” pathway feared before the Paris Agreement (5).
Negative-emission technologies are not an insurance policy, but rather an unjust and high-stakes gamble. 

There is a real risk they will be unable to deliver on the scale of their promise. 

If the emphasis on equity and risk aversion embodied in the Paris Agreement are to have traction, negative-emission technologies should not form the basis of the mitigation agenda. This is not to say that they should be abandoned (14, 15). They could very reasonably be the subject of research, development, and potentially deployment, but the mitigation agenda should proceed on the premise that they will not work at scale. The implications of failing to do otherwise are a moral hazard par excellence.

Press link for more: Kevin Anderson & Glen Peters

Climate urgency: we’ve locked in more global warming than people realize. #Auspol

While most people accept the reality of human-caused global warming, we tend not to view it as an urgent issue or high priority. 

That lack of immediate concern may in part stem from a lack of understanding that today’s pollution will heat the planet for centuries to come.

So far humans have caused about 1°C warming of global surface temperatures, but if we were to freeze the level of atmospheric carbon dioxide at today’s levels, the planet would continue warming. Over the coming decades, we’d see about another 0.5°C warming, largely due to what’s called the “thermal inertia” of the oceans (think of the long amount of time it takes to boil a kettle of water). 

The Earth’s surface would keep warming about another 1.5°C over the ensuing centuries as ice continued to melt, decreasing the planet’s reflectivity.
To put this in context, the international community agreed in last year’s Paris climate accords that we should limit climate change risks by keeping global warming below 2°C, and preferably closer to 1.5°C. Yet from the carbon pollution we’ve already put into the atmosphere, we’re committed to 1.5–3°C warming over the coming decades and centuries, and we continue to pump out over 30 billion tons of carbon dioxide every year.

We can solve this problem if, rather than holding the amount of atmospheric carbon dioxide steady, it falls over time. As discussed in the above video, Earth naturally absorbs more carbon than it releases, so if we reduce human emissions to zero, the level of atmospheric carbon dioxide will slowly decline. Humans can also help the process by finding ways to pull carbon out of the atmosphere and sequester it.

Scientists are researching various technologies to accomplish this, but we’ve already put over 500 billion tons of carbon dioxide into the atmosphere. Pulling a significant amount of that carbon out of the atmosphere and storing it safely will be a tremendous challenge, and we won’t be able to reduce the amount in the atmosphere until we first get our emissions close to zero.
There are an infinite number of potential carbon emissions pathways, but the 2014 IPCC report considered four possible paths that they called RCPs. In one of these (called RCP 2.6 or RCP3-PD), we take immediate, aggressive, global action to cut carbon pollution, atmospheric carbon dioxide levels peak at 443 ppm in 2050, and by 2100 they’ve fallen back down to today’s level of 400 ppm. In two others (RCPs 4.5 and 6.0) we act more slowly, and atmospheric levels don’t peak until the year 2150, then they remain steady, and in the last (RCP8.5) carbon dioxide levels keep rising until 2250.


As the figure below shows, in the first scenario, global warming peaks at 2°C and then temperatures start to fall toward the 1.5°C level, meeting our Paris climate targets. In the other scenarios, temperatures keep rising centuries into the future.


This is the critical decade

We don’t know what technologies will be available in the future, but we do know that the more carbon pollution we pump into the atmosphere today, the longer it will take and more difficult it will be to reach zero emissions and stabilize the climate. We’ll also have to pull that much more carbon out of the atmosphere. 
It’s possible that as in three of the IPCC scenarios, we’ll never get all the way down to zero or negative carbon emissions, in which case today’s pollution will keep heating the planet for centuries to come. Today’s carbon pollution will leave a legacy of climate change consequences that future generations may struggle with for the next thousand years.

Five years ago, the Australian government established a Climate Commission, which published a report discussing why we’re in the midst of the ‘critical decade’ on climate change:
The risks of future climate change – to our economy, society and environment – are serious, and grow rapidly with each degree of further temperature rise. Minimising these risks requires rapid, deep and ongoing reductions to global greenhouse gas emissions. We must begin now if we are to decarbonise our economy and move to clean energy sources by 2050. This decade is the critical decade.

Press link for more: theguardian.com

No Techno-Fix For Irreversible Ocean Collapse From Carbon Pollution #Auspol

A new study finds there is no “deus ex machina” way to prevent a catastrophic collapse of ocean life for centuries if not millennia — if we don’t start slashing carbon pollution ASAP.The Nature Climate Change study examined what would happen if we continue current CO2 emissions trends through 2050 and then try to remove huge volumes of CO2 from the air after the fact with some techno-fix. The result, as co-author John Schellnhuber, director of the Potsdam Institute for Climate Impact Research, put it, is “we will not be able to preserve ocean life as we know it.”

A “Deus ex machina” — literally “God from the machine” — originated in Greek tragedy (and comedy) where a machine (like a crane) delivers actors who play gods to the stage to magically resolve all of the dramatic problems. Today it means, “a plot device whereby a seemingly unsolvable problem is suddenly and abruptly resolved by the contrived and unexpected intervention of some new event, character, ability or object.”

Geo-engineering is a classic last-minute techno-fix or deus ex machina offered by some to the (solvable) problem of human-caused global warming. It does this either by blocking sunlight (e.g. with mass injection of sulfate aerosols) or by post-facto carbon dioxide removal (CDR).

As we reported in February, the whole notion is so dubious, so fraught with obvious danger, that even the staid National Academy of Sciences felt compelled to eviscerate the whole idea in two separate reports. Indeed, the reports were on “climate intervention,” since the Academy panel rejected the term “geoengineering.” Why? Because “we felt ‘engineering’ implied a level of control that is illusory,” explained Marcia McNutt who led the report committee.

The panel warned of the huge risks with the more invasive strategies to reduce the amount of sunlight absorbed by the Earth: “There is significant potential for unanticipated, unmanageable, and regrettable consequences in multiple human dimensions from albedo modification at climate altering scales, including political, social, legal, economic, and ethical dimensions.”

This is commonly known as the Frankenstein’s monster problem, where your advanced techno-creation turns against you. The modern retelling of that story this year was a poignant sci-fi thriller, appropriately titled “Ex Machina.” Spoiler alert: It doesn’t end well for the techno-geek who tries to play God and create an “artificial intelligence.”

There is no substitute for dramatic reductions in the emissions of CO2 and other greenhouse gases to mitigate the negative consequences of climate change, and concurrently to reduce ocean acidification,” the Academy panel concluded, a point the new study on acidification underscores.

The paper looked at the impact on the ocean ecosystem of acidification combined with “increasing temperatures and decreasing concentrations of dissolved oxygen in the sea.” As the news release notes, “Earlier in Earth’s history, such changes have led to mass extinctions.”

Indeed, a 2010 study showed that humans are acidifying the oceans 10 times faster today than 55 million years ago when a mass extinction of marine species occurred. And a 2015 study in Science concluded that the Permo-Triassic extinction 252 million years ago — considered the “the greatest extinction of all time” — happened during the time when massive amounts carbon dioxide were injected into the atmosphere, first slowly and then quickly (driven by volcanic eruptions). The researchers found that “during the second extinction pulse, however, a rapid and large injection of carbon caused an abrupt acidification event that drove the preferential loss of heavily calcified marine biota.” How bad was this extinction? Besides killing over 90 percent of marine life, it wiped out some 70 percent of land-based animal and plant life.

As discussed a year ago, when the world’s leading scientists and governments released the final “Synthesis” report of the Intergovernmental Panel on Climate Change, they made clear that it is the long-term irreversibility of climate change that makes it so immoral. For every scenario they looked at — other than the one that keeps total warming below 2°C — the IPCC warns:

A large fraction of anthropogenic climate change resulting from CO2 emissions is irreversible on a multi-century to millennial time scale, except in the case of a large net removal of CO2 from the atmosphere over a sustained period.

And this new study now aims directly at the IPCC’s one (tiny) exception. “Large net removal of CO2 from the atmosphere over a sustained period” won’t help large parts of the ocean stave off catastrophic long-term destruction. Again, there is no deus ex machina that will save us if we shun the one strategy we know will work (slashing carbon pollution).

Press link for more: Joe Romm | thinkprogress.org

Stop burning fossil fuels now: there is no CO2 ‘technofix’, scientists warn #Auspol 

Researchers have demonstrated that even if a geoengineering solution to CO2 emissions could be found, it wouldn’t be enough to save the oceans
German researchers have demonstrated once again that the best way to limit climate change is to stop burning fossil fuels now.
In a “thought experiment” they tried another option: the future dramatic removal of huge volumes of carbon dioxide from the atmosphere. This would, they concluded, return the atmosphere to the greenhouse gas concentrations that existed for most of human history – but it wouldn’t save the oceans.
That is, the oceans would stay warmer, and more acidic, for thousands of years, and the consequences for marine life could be catastrophic.
The research, published in Nature Climate Change today delivers yet another demonstration that there is so far no feasible “technofix” that would allow humans to go on mining and drilling for coal, oil and gas (known as the “business as usual” scenario), and then geoengineer a solution when climate change becomes calamitous.

Sabine Mathesius (of the Helmholtz Centre for Ocean Research in Kiel and the Potsdam Institute for Climate Impact Research) and colleagues decided to model what could be done with an as-yet-unproven technology called carbon dioxide removal. One example would be to grow huge numbers of trees, burn them, trap the carbon dioxide, compress it and bury it somewhere. Nobody knows if this can be done, but Dr Mathesius and her fellow scientists didn’t worry about that.
They calculated that it might plausibly be possible to remove carbon dioxide from the atmosphere at the rate of 90bn tons a year. This is twice what is spilled into the air from factory chimneys and motor exhausts right now.
The scientists hypothesised a world that went on burning fossil fuels at an accelerating rate – and then adopted an as-yet-unproven high technology carbon dioxide removal technique.
“Interestingly, it turns out that after ‘business as usual’ until 2150, even taking such enormous amounts of CO2 from the atmosphere wouldn’t help the deep ocean that much – after the acidified water has been transported by large-scale ocean circulation to great depths, it is out of reach for many centuries, no matter how much CO2 is removed from the atmosphere,” said a co-author, Ken Caldeira, who is normally based at the Carnegie Institution in the US.
The oceans cover 70% of the globe. By 2500, ocean surface temperatures would have increased by 5C and the chemistry of the ocean waters would have shifted towards levels of acidity that would make it difficult for fish and shellfish to flourish. Warmer waters hold less dissolved oxygen. Ocean currents, too, would probably change.

But while change happens in the atmosphere over tens of years, change in the ocean surface takes centuries, and in the deep oceans, millennia. So even if atmospheric temperatures were restored to pre-Industrial Revolution levels, the oceans would continue to experience climatic catastrophe.

Press link for more: Tim Radford | theguardian.com

Reducing emissions alone won’t stop #climatechange: new research #Auspol

Based on current greenhouse gas emissions, the world is on track for 4C warming by 2100 – well beyond the internationally agreed guardrail of 2C. To keep warming below 2C, we need to either reduce our emissions, or take carbon dioxide out of the atmosphere.
Two papers published today investigate our ability to limit global warming and reverse the impacts of climate change. The first, published in Nature Communications, shows that to limit warming below 2C we will have to remove some carbon from the atmosphere, no matter how strongly we reduce emissions.
The second, in Nature Climate Change, shows that even if we can remove enough CO2 to keep warming below 2C, it would not restore the oceans to the state they were in before we began altering the atmosphere.
How we’re tracking
Currently, we’re at 400 parts per million – rising from 280 ppm before the industrial revolution.
To project future climate change the Intergovernmental Panel on Climate Change (IPCC) uses a range of emissions scenarios called Representative Concentration Pathways (RCPs), based on different economic and energy use assumptions.
In the high scenario, RCP8.5, emissions continue to grow from our present rate of 37 billion tonnes of CO2 per year to about 100 billion tonnes of CO2 in 2100, when atmospheric CO2 levels are projected to be 950 ppm. This scenario assumes little mitigation of our carbon emissions.
In the low scenario, RCP2.6, emissions rise slowly till the end of this decade to about 40 billion tonnes CO2 each year and then start to decline. Amongst the IPCC emission scenarios, only the RCP 2.6 appears capable of limiting warming to below 2C. With RCP 2.6 at the end of the century atmospheric concentrations is about 420 ppm, and only 20 ppm above the present value.
Present emissions are tracking close to the highest scenario (RCP8.5). If we want to keep warming below 2C it requires a substantial reduction in the amount of CO2 released into the atmosphere.
What we have to do
We have two options by which to reduce emissions, the first through reducing the use of fossil fuel energy, and the second through Carbon Dioxide Removal (CDR).
CDR refers to technologies that remove CO2, the primary greenhouse gas, from the atmosphere. Examples include Biomass Energy with Carbon Capture and Storage (BECCS), afforestation (planting trees), adding iron to the ocean, and directly capturing CO2 from the air.
For many CDR technologies the boundary between “climate intervention” (or “geoengineering”) and greenhouse gas mitigation is unclear. However, the goal is the same, enhancing the CO2 current taken up and sequestered by the land and ocean.
Can we just remove carbon?
The first study, led by Thomas Gasser, used results from 11 Earth System Models, in conjunction with a simple carbon-cycle models to simulate different emissions reductions scenarios associated with the low emissions pathway, RCP2.6.
They showed that under all emissions reductions scenarios, even slashing emissions to less than 4 billion tonnes CO2 each year, (greater than a 90% cut in current emissions) is insufficient to limit warming to 2C.
This means that some form of CDR will be required to keep warming at less than 2C. The exact level of CDR required depends very much on the emissions reduction achieved, from 2 billion to 10 billion tonnes of CO2 each year in the most optimistic scenario, to between 25-40 billion tonnes CO2 each year in the lowest emission reduction case. This is equivalent to current total global emissions.
The study also suggests that the requirements for CDR may indeed be even higher if unanticipated natural carbon cycle (positive) feedbacks were to occur. We may desire the ability to remove more carbon from the atmosphere to compensate for these.
The other study, led by Sabine Mathesius, explores whether CDR under high CO2 emissions can achieve a similar environmental outcome to a rapid transition to a low carbon energy use (RCP2.6).
It shows that aggressive CDR can only undo the effect of high emissions (RCP8.5) and return the marine environment to either pre-industrial values or the low emission scenario over thousands of years. The ability to undo the damage caused by high emissions reflects timescale of the ocean carbon cycle. While the upper ocean quickly reaches equilibrium with the atmosphere, the deeper ocean takes millennia to restabilise.
Such irreversibility of the system is an important consequence and the study provides valuable information to consider as we tackle rising CO2 levels. Both studies are theoretical but they provide an important perspective on the ability of mankind to engineer the climate system and undo the effects of high CO2 levels in the atmosphere.
No CDR or suite of CDR technologies exists capable of removing the levels of CO2 at the upper range of what maybe required. This means that, while CDR could aid in limiting global temperatures below 2C, in practice this is not even yet possible, and would not be without risks. This continues to be a very active area of research.

Press link for more: Richard Matear & Andrew Lenton | theconversation.com